
Attribute types, concept hierarchies 
and negative associations

Lecture 17



Types of attributes

• We were working with asymmetric binary 
attributes: 
– Binary: Item: 0 – not present, 1 – present
– Asymmetric: more interested in presence than in 

absence

• What do we do if attributes are
– Symmetric binary
– Categorical
– Numeric



Attribute type examples
• Symmetric binary attributes

– Gender

– Computer at Home

– Chat Online

– Shop Online 

– Privacy Concerns



Attribute type examples

• Nominal (categorical) attributes

– Level of Education 

– State



Transforming attributes into 
asymmetric binary

• Create a new item for each distinct attribute-value pair. 

• E.g., the nominal attribute Level of Education can be 
replaced by three binary items: 
– Education = College
– Education = Graduate
– Education = High School

• Binary attributes such as Gender are converted into a pair 
of binary items
– Male 
– Female



Data after binarizing attributes into 
“items”

Note, that here we are interested in both yes and no values of binary attributes, 
so we generate a separate item for each: privacy=Yes and privacy=No



Numeric (continuous) attributes

• Solution: Discretize

• Example of rules:
– Age[21,35)  Salary[70k,120k)  Buy
– Salary[70k,120k)  Buy  Age: =28, =4

• Of course discretization isn’t always easy.
– If intervals too large may not have enough confidence 

Age  [12,36)  Chat Online = Yes (s = 30%, c = 57.7%) 
(minconf=60%)

– If intervals too small may not have enough support
Age  [16,20)  Chat Online = Yes (s = 4.4%, c = 84.6%) 
(minsup=15%)



Statistics-based quantitative association rules

Salary[70k,120k)  Buy  Age: =28, =4

Generated as follows:
• Specify the target attribute (e.g. Age). 
• Withhold target attribute, and “itemize” the remaining 

attributes.
• Extract frequent itemsets from the itemized data.

– Each frequent itemset identifies an interesting segment of the 
population.

• Derive a rule for each frequent itemset. 
– E.g., the preceding rule is obtained by averaging the age of 

Internet users who support the frequent itemset
{Annual Income> $100K, Shop Online = Yes}

• Remark: Notion of confidence is not applicable to such rules.



Associations across concept 
hierarchies



Items: levels of abstraction
Food

Bread

Milk

Skim 2%

Electronics

Computers Home

Desktop Laptop
Wheat White

Foremost Kemps

DVDTV

Printer Scanner

Accessory



Multi-level Association Rules

• Rules about items at lower levels of 
abstraction can represent a more general rule: 

skim milk  white bread, 

2% milk  wheat bread,

skim milk  wheat bread, etc.

are all indicative of association between their 
generalizations milk and bread



How much to generalize?

• Should we consider correlation between milk and 
bread, between cream and bagels, or between 
specific labels of cream and bagels?

• The correlation between specific items can be hard 
to find because of the low support

• The correlation between more general itemsets can 
be very low, despite that the support is high 



Mining multi-level Association Rules

Approach 1
• Augmenting each transaction with higher level items

Original Transaction: {skim milk, wheat bread}
Augmented Transaction:

{skim milk, wheat bread, milk, bread, food}

• Issue:
– Items that reside at higher levels have much higher 

support counts
if support threshold is low, we get too many frequent patterns 
involving items from the higher levels



Multi-level Association Rules
Approach 2
• Generate frequent patterns at highest level first. 

• Then, generate frequent patterns at the next highest level, and so on, 
decreasing minsupport threshold

• Issues:
– May miss some potentially interesting cross-level association patterns. 

E.g.

skim milk  white bread, 
2% milk  white bread,
skim milk  white bread

might not survive because of low support, but 
milk  white bread

could. 
However, we don’t generate a cross-level itemset such as 

{milk, white bread}



Transactions also may have hierarchies

All

M F

College
High 

school
College

High 
school

Hierarchy of groups: strata



Example (symmetric binary variables)

• What’s the confidence of the following rules:

(rule 1) {HDTV=Yes}  {Exercise machine = Yes}

(rule 2) {HDTV=No}  {Exercise machine = Yes} ?

Confidence of rule 1 = 99/180 = 55%

Confidence of rule 2 = 54/120 = 45%

Conclusion: there is a positive correlation between 
buying HDTV and buying exercise machines



What if we look into more specific groups

• What’s the confidence of the rules for each strata:

(rule 1) {HDTV=Yes}  {Exercise machine = Yes}

(rule 2) {HDTV=No}  {Exercise machine = Yes}   ?

College students:

Confidence of rule 1 = 1/10 = 10%

Confidence of rule 2 = 4/34 = 11.8%

Working Adults:

Confidence of rule 1 = 98/170 = 57.7%

Confidence of rule 2 = 50/86 = 58.1%

The rules suggest that, 
for each group, 
customers who don’t 
buy HDTV are more 
likely to buy exercise 
machines, which 
contradict the previous 
conclusion when data 
from the two customer 
groups are pooled 
together.



Correlation is reversed 
at different levels of generalization

At a more general level of abstraction:

{HDTV=Yes}  {Exercise machine = Yes}

College students:

{HDTV=No}  {Exercise machine = Yes}

Working Adults:

{HDTV=No}  {Exercise machine = Yes}

This is called 
Simpson’s Paradox



Importance of Stratification
• The lesson here is that proper stratification is 

needed to avoid generating spurious patterns 
resulting from Simpson's paradox. 

For example

• Market basket data from a major supermarket 
chain should be stratified according to store 
locations, while 

• Medical records from various patients should be 
stratified  according to confounding factors such as 
age and gender.



Explanation of Simpson’s paradox

• Lisa and Bart are programmers, and they fix bugs for 
two weeks 

Week 1 Week 2 Both weeks

Lisa 60/100 1/10 61/110

Bart 9/10 30/100 39/110

Who is more productive: Lisa or Bart?



Explanation of Simpson’s paradox

Week 1 Week 2 Both weeks

Lisa 60/100 1/10 61/110

Bart 9/10 30/100 39/110

If we consider productivity for each week, we notice 
that the samples are of a very different size

The work should be judged from an equal sample 
size, which is achieved when the numbers of bugs 
each fixed are added together



Explanation of Simpson’s paradox

Week 1 Week 2 Both weeks

Lisa 60/100 1/10 61/110

Bart 9/10 30/100 39/110

Simple algebra of fractions shows that even though

a1/A > b1/B
c1/C > d1/D

(a1+c1)/(A+C) can be smaller than (b1+d1)/(B+D) !

This may happen when the sample sizes A, B, C,D are skewed
(Note, that we are not adding two inequalities, but adding the 
absolute numbers)



Simpson’s paradox in real life

• Two examples:

– Gender bias

– Medical treatment



Example 1: Berkeley gender bias case

Admitted Not 
admitted

Total

Men 3,714 4,727 8,441

Women 1,512 2,808 4,320

Admitted to graduate school at University of California, Berkeley (1973)

• What’s the confidence of the following rules:
(rule 1) {Man=Yes}  {Admitted= Yes}
(rule 2) {Man=No}  {Admitted= Yes} ?

Confidence of rule 1 = 3714/8441= 44%
Confidence of rule 2 = 1512/4320 = 35%

Conclusion: bias against women applicants



Example 1: Berkeley gender bias case

Men Women
Dept.Total Admitted Total Admitted

A 825 62% 108 82%

B 560 63% 25 68%

C 325 37% 593 34%

D 417 33% 375 35%

E 191 28% 393 24%

F 272 6% 341 7%

Stratified by the departments

In most departments, 
the bias is towards women!



Example 2: Kidney stone treatment
Success rates of 2 treatments for kidney stones

Treatments Success Not success Total

A* 273 77 350

B** 289 61 350

• What’s the confidence of the following rules:
(rule 1) {treatment=A}  {Success= Yes}
(rule 2) {treatment=B}  {Success = Yes} ?

(A) Confidence of rule 1 = 273/350= 78%
(B) Confidence of rule 2 = 289/350 = 83%

*Open procedures (surgery)
** Percutaneous nefrolithotomy (removal through a small opening) 

Conclusion: treatment B is better



Example 2: Kidney stone treatment
Success rates of 2 treatments for kidney stones

Treatment A Treatment B

Small stones 93% (81/87) 87%(234/270)

Large stones 73%(192/263) 69%(55/80)

Both 78%(273/350) 83% (289/350)

Treatment A is better for both small and large stones,
But treatment B is more effective if we add both groups together



Implications in decision making

• Which data should we consult when choosing an 
action: the aggregated or stratified?

• Kidney stones: if you know the size of the stone, 
choose treatment A, if you don’t – treatment B? 



Implications in decision making

• Which data should we consult when choosing an 
action: the aggregated or stratified?

• The common sense: the treatment which is preferred 
under both conditions should be preferred when the 
condition is unknown



Implications in decision making

• Which data should we consult when choosing an 
action: the aggregated or stratified?

• If we always choose to use the stratified data, we can 
partition strata further, into groups by eye color, age, 
gender, race … These arbitrary hierarchies can 
produce opposite correlations, and lead to wrong 
choices



Implications in decision making

• Which data should we consult when choosing an 
action: the aggregated or stratified?

• Conclusion: data should be consulted with care and 
the understanding of the underlying story about the 
data is required for making correct decisions

From: Judea Pearl. Causality: Models, Reasoning, and Inference



Negative correlations and 
flipping patterns



Negative association rules

• The methods for association mining were based on 
the assumption that the presence of an item is more 
important than its absence (asymmetric binary 
attributes)

• The negative correlations can be useful: 

– To identify competing items: absence of Blu ray 
and DVD player in the same transaction

– To find rare important events: rare occurrence 
{Fire=yes, Alarm=On}



Mining negative patterns

• Negative itemset: a frequent itemset where at least 
one item is negated

• Negative association rule: is an association rule 
between items in a negative itemset with confidence 
≥ minConf

• If a regular itemset is infrequent due to the low 
count of some item, it is frequent if we consider the 
negation (absence) of a corresponding item



Negative patterns = non-positive
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE



Challenging task

• Positive associations can be extracted only for high-
levels of support. Then the set of all frequent 
itemsets is manageable

• In this case, the complement to all frequent itemsets
is exponentially large, and cannot be efficiently 
enumerated

• But do we need all negative associations?



Flipping patterns

• Flipping patterns are extracted from the datasets with 
concept hierarchies

• The pattern is interesting if it has positive correlation 
between items which is accompanied by the negative 
association of their minimal generalizations, and vice 
versa

• We call such patterns flipping patterns



Example from Groceries dataset

Beer

Canned 
beer

Cosmetics

Baby 
cosmetics

Drinks Non-food

A

Delicatessen

Salad dressing

Pork

Pork

Fresh produce Meat

B



Examples from Movie rating dataset

western

My darling 
Clementine (1946)

High noon 
(1952)

romance

The big 
country (1958)

A farewell to 
arms (1932)

all

Romance

The big 
country 
(1958)

Western

High 
noon 

(1952)



Examples from US census dataset

Prof: 
Craft-repair

Prof: 
Craft-repair

&
Edu: 

Bachelor

Income: 
≥50 K

Income: 
≥50 K

A

Age: 
60-65

Age: 
60-65

&
Prof: 

Executive

Income: 
≥50 K

Income: 
≥50 K

B



Examples from medical papers dataset

Mental 
disorders

Substance
-related 

Human 
activities

Temperance

Withdrawal 
syndrome

Temperance

A

Psych. 
phenomena

Psycho
-physiology

Behavioral 
disciplines

Psycho
-therapy

Biofeedback
Behavior 
therapy

B


