Which associations are
interesting?



Frequent itemsets can be very
numerous

* We might choose to work with the top
frequent itemsets



Frequent items in 5 Shakespeare

sonnets
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Tag (word) cloud — visualization of the most frequent words:

http://www.wordle.net/create


http://www.wordle.net/create

Frequent items in 5 Shakespeare
sonnets

alters art bends breath
change cheeks compare
disgrace eternal eyes fair far ... hath

heaven hour keep i lips lOVe

man Mistress nature red
remove roses sickle sometime

state summer sweet

thee wink thou thy white

wires

e http://www.tagcrowd.com/



http://www.tagcrowd.com/

Frequent items in papers on frequent
pattern mining
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Frequent items in papers on frequent
pattern mining




Top-frequent itemsets

* Easy to compute
* Not interesting!

 We need to lower the min support threshold
to find something non-trivial



Frequent Itemset Mining Implementations

(FIMI) 2004 challenge

http://fimi.ua.ac.be/data/

WebDocs dataset is about 5GB
Each document — transaction, each word - item

The challenge is to compute all frequent itemsets
(word combinations which frequently occur together)

The number of distinct items (words) = 5,500,000
The number of transactions (documents) = 2,500,000
Max items per transaction = 281


http://fimi.ua.ac.be/data/

We can find the most frequent
itemsets with minsupp=10%

* These itemsets are trivial
word combinations = =

e When we go to the lower |
support, the number of
frequent itemsets becomes
big

* How big? Very big: that we L.
cannot keep in memory all P e e s
different 2-item 0T T 8
combinations, to update
their counters

0k




How can we find new non-trivial
knowledge

e Use confidence?

* The confidence is not-antimonotone, so the

algorithm cannot prune any item combination
and needs to compute confidence for each
possible combination of items

 Computationally infeasible



Pitfalls of confidence

* Suppose we managed to rank all possible
association rules by confidence

* How good are the top-confidence rules?



Evaluation of association between
items: contingency table

* Given an itemset {X, Y}, the information about the relationship
between X and Y can be obtained from a contingency table

Contingency table for {X ,Y}

f,,: support count of Xand Y
f.o: support count of X and Y
for: support count of Xand Y
f,: support count of Xand Y

X fll 1:10 1:1+
X 1:01 1:OO 1:0+

\ Used to define various measures




Example: tea and coffee

Coffee | —Coffee
Tea 150 50 200
—Tea 750 150 900
900 200 1100




Example: tea and coffee

C —-C
T 150 50 200
—T 750 150 900
900 200 1100

e Confidence of rule T — C (conditional probability P(C|T)):
sup(T and C)/sup (T)=150/200=0.75

‘ This is a top-confidence rule!




Example: tea and coffee

C —-C
T 150 50 200
—T 750 150 900
900 200 1100

e ConfidenceofruleT —>C
P(C|T)=0.75

However, P(C)=900/1100=0.85



Example: tea and coffee

C -C
T 150 50 200
=T 750 150 900
900 200 1100

 Confidence of ruleT— C P(C|T)=0.75
However, P(C)=900/1100=0.85

Although confidence is high, the rule is misleading:

P(C| —T)=750/900=0.83

The probability that the person drinks coffee is not increased
due to the fact that he drinks tea: quite the opposite —

knowing that someone is a tea-lover decreases the probability
that he is also a coffee-addict



Why did it happen?

C —-C
T 150 50 200
—T 750 150 900
900 200 1100

 Confidence of ruleT— C P(C|T)=0.75

Because the support counts are skewed: much
more people drink coffee (900) than tea (200)

and confidence takes into account only one-
directional conditional probability



We want to evaluate mutual
dependence (association, correlation)

* Not top-frequent
* Not top-confident

* |dea: apply statistical independence test



Statistical measure of association
(correlation)-Lift

If the appearance of T is statistically independent of appearance of C, then
the probability to find them in the same trial (transaction) is P(C)xP(T)

We expect to find both C and T with support P(C) x P(T) — expected
support

If actual support P(CAT)

P(CAT) = P(C) x P(T) => Statistical independence
P(CAT) > P(C) x P(T) => Positive association
P(CAT) < P(C) x P(T) => Negative association



Lift (Interest Factor)

* Measure that takes into account statistical dependence

P(AAB) f,./N  Nxf,

S = B (AP(®) (o /N)x(f/N) foxt,

e |nterest factor compares the frequency of a pattern against a
baseline frequency computed under the statistical

independence assumption.
e The baseline frequency for a pair of mutually independent
variables is:
1:11 f1+ f+1 f1+ X f+1

N = N X N Or equivalently f11= N




Interest Equation

* Fraction f,,/N is an estimate for the joint
probability P(A,B), while f,, /N and f,, /N are the
estimates for P(A) and P(B), respectively.

* |f A and B are statistically independent, then
P(AAB)=P(A)xP(B), thus the Interest is 1.

— 1, if A and B are independent;
I(A,B)< > 1, if A and B are positively correlated;
< 1, if A and B are negatively correlated.




Example: tea and coffee

Coffee | —Coffee

Tea 150 50 200
—Tlea 750 150 900
900 200 1100

Association Rule: Tea — Coffee

Interest = 150*1100 / (200*900)= 0.92

(< 1, therefore they are negatively correlated — almost independent)



Problems with Lift

e Consider two contingency tables from the same dataset:

Coffee (C) and milk (M)

Popcorn (P) and soda (S)

C -C
M | 10,000| 1,000 11,000
—-M | 1,000| 88,000 89,000
11,000 | 89,000 | 100,000

P —P
S | 1,000 | 1,000 | 2,000
~S | 1,000 | 97,000 | 98,000

2,000 | 98,000 | 100,000

Which items are more correlated: M and Cor P and S?




Problems with Lift

Coffee (C) and milk (M)

Popcorn (P) and soda (S)

C —C
M | 10,000 1,000| 11,000
—-M | 1,000| 88,000 89,000
11,000 | 89,000 | 100,000
Well,

P —P

S | 1,000 | 1,000 | 2,000

~S | 1,000 | 97,000 | 98,000
2,000 | 98,000 | 100,000

Lift (M,C) = 8.26
Lift (P,S)=25.00




Problems with Lift

Coffee (C) and milk (M)

Popcorn (P) and soda (S)

C -C
M | 10,000| 1,000 11,000
—-M | 1,000| 88,000 89,000
11,000 | 89,000 | 100,000

Why did that happen?
Because probabilities P(S)= P(P) =0.02 are very low comparing with probabilities

P(C) = P(M)=0.11

P —P

S | 1,000 | 1,000 | 2,000

~S | 1,000 | 97,000 | 98,000
2,000 | 98,000 | 100,000

Lift (M,C) = 8.26
Lift (P,5)=25.00

By multiplying very low probabilities, we get very-very low expected probability
and then any number of items occurring together will be larger than expected




Problems with Lift

Coffee (C) and milk (M)

Popcorn (P) and soda (S)

C -C
M | 10,000| 1,000 11,000
—-M | 1,000| 88,000 89,000
11,000 | 89,000 | 100,000

P —P

S | 1,000 | 1,000 | 2,000

~S | 1,000 | 97,000 | 98,000
2,000 | 98,000 | 100,000

Lift (M,C) = 8.26
Lift (P,5)=25.00

But most of the items in a large database have very low supports comparing with
the total number of transactions

Conclusion: we are dealing with small probability events, where regular statistical
methods might not be applicable




More problems with Lift:

positive or negative?

* Consider two contingency tables for C and M from 2 different datasets:

Dataset 1
C —-C
M 400 600 1,000
-M 600 | 18,400| 19,000
1,000 | 19,000 20,000

According to definition of Lift:

expected (M and C)=1000/20000 x 1000/20000 =0.0025
actual (M and C)=400/20000 = 0.02

DB1:

DB2:

Lift = 8.0 (positive correlation)

Dataset 2
C —-C
M 400 600 1,000
-M 600 1,300 1,900
1,000 1,900 2,000

expected (M and C)=1000/2000 x 1000/2000 =0.25

actual (M and C)=400/2000 = 0.2
Lift = 0.8 (negative correlation)




More problems with Lift:
positive or negative?

Dataset 1 Dataset 2
C —-C C —-C
M 400 600 1,000 M 400 600 1,000
-M 600 | 18,400| 19,000 -M 600 1,300 1,900
1,000 19,000 20,000 1,000 1,900 2,000

But nothing has changed in connections between C and M

The changes are in the count of transactions which do not contain neither C nor
M.

Such transactions are called null-transactions with respect to Cand M

We want the measure which does not depend on null-transactions: null-
transaction invariant. Which depends only on counts of items in the current

itemset



What are we looking for?

The area corresponds to support counts




Possible null-invariant measure 1:
Jaccard index

Jaccard index: intersection/union

JI (A, B) = sup (A and B)/[sup(A)+sup(B)-sup(A and B)]




Possible null-invariant measure 2:
Kulczynsky

Kulczynsky: arithmetic mean of conditional
probabilities

Kulc (A, B) = [P(A|B)+P(B|A)]/2

In terms of support counts:

Kulc(A,B) =% [sup (A and B)/sup (A) + sup (A and B)/sup (B) ]



Possible null-invariant measure 3:
Cosine

Cosine: geometric mean of conditional probabilities

Cos (A, B) = sqrt[P(A|B) x P(B|A)]

In terms of support counts:

Cos (A,B) = sup (A and B)/sqrt [sup (A) x sup (B)]



Kulc on the same dataset

e Consider two contingency tables from the same dataset:

Coffee (C) and milk (M)

Popcorn (P) and soda (S)

C -C
M | 10,000| 1,000 11,000
—-M | 1,000| 88,000 89,000
11,000 | 89,000 | 100,000

P —P
S | 1,000 | 1,000 | 2,000
~S | 1,000 | 97,000 | 98,000

2,000 | 98,000 | 100,000

Which items are more correlated: M and Cor P and S?




Kulc on the same dataset

Coffee (C) and milk (M)

Popcorn (P) and soda (S)

C —C P —P
M | 10,000 1,000| 11,000 S | 1,000 | 1,000 | 2,000
—~M | 1,000| 88,000 89,000 ~S | 1,000 | 97,000 | 98,000
11,000 | 89,000 | 100,000 2,000 | 98,000 | 100,000
Kulc (C,M) = % *(10000/11000+10000/11000) =0.91
Kulc (P,S) = % *(1000/2000+1000/2000) =
Lift (M,C) = 8.26

Lift (P,5)=25.00



Kulc on two datasets:
positive or negative?

Dataset 1 Dataset 2

C -C C -C

400 600 1,000 M 400 600 1,000

600 | 18,400 | 19,000 -M 600| 1,300 1,900

1,000 19,000 20,000 1,000 1,900 2,000

DB1: Kulc (C,M) = % *(400/1000+400/1000) =0.4
DB2: Kulc (C,M) = % *(400/1000+400/1000) = 0.4

DB1: Lift = 8.0 (positive correlation)
DB2: Lift = 0.8 (negative correlation)



Problems begin

 We found decent null-invariant measures to evaluate
the quality of associations (correlations) between
items

 The problem: how do we extract top-ranked
correlations from large transactional database?

 This is the area of the current research



We were able to discover interesting
strong correlations with low supports

{Steven M. Beitzel, Eric C. Jensen} 25 | 1.00
{In-Su Kang, Seung-Hoon Na} 20 [0.958

DBLP AUTHORS | {Ana Simonet, Michel Simonet } 16 |0.94
{ Caetano Traina Jr., Agma J M. Traina} 35 0.92
{ Claudio Carpineto, Giovanni Romano } 15 [0.91
{ People with social security income: > 809%,

Age = 65 > B0%} |47 0.76

{Large families (= 6): < 20%, White: > 80%} 1017 |0.75
{In dense housing (= 1 per room): > 80%,
COMMUNITIES | Hispanic: > 80%, Large families (= 6): > 80%} | 53 0.64
{ People with Bachelor or higher degree: > 80%,
Median family income: very high } | 60 0.63

{ People with investment income: > 80%,
Median family income: very high } | 66 0.61

*Efficient mining of top correlated patterns based on null-invariant measures by S. Kim et
al., 2011



