Which associations are interesting?

Lecture 16

Frequent itemsets can be very numerous

- We might choose to work with the top frequent itemsets

Frequent items in 5 Shakespeare sonnets

Edit Lanquage Eont Layout Golor

Tag (word) cloud - visualization of the most frequent words:

http://www.wordle.net/create

Frequent items in 5 Shakespeare sonnets

change cheeks compare
chans breath
disgrace eternal eyes fairfar hath
heaven hour keep nat lips love
man mistress nature red
remove roses rom sickle sometime
state summer sweet
thee think thou thy white .
wires

Frequent items in papers on frequent pattern mining

al algorithm association \qquad conference
data databases discovery efi
et frequent semes graph han
international items itemsets
kdd knowledge meneme me
mining patterns
proceeding proposed .asos rules
uence sequential

Frequent items in papers on frequent pattern mining

Top-frequent itemsets

- Easy to compute
- Not interesting!
- We need to lower the min support threshold to find something non-trivial

Frequent Itemset Mining Implementations (FIMI) 2004 challenge

http://fimi.ua.ac.be/data/

- WebDocs dataset is about 5GB
- Each document - transaction, each word - item
- The challenge is to compute all frequent itemsets (word combinations which frequently occur together)
- The number of distinct items (words) $=5,500,000$
- The number of transactions (documents) $=2,500,000$
- Max items per transaction = 281

We can find the most frequent itemsets with minsupp=10\%

- These itemsets are trivial word combinations
- When we go to the lower support, the number of frequent itemsets becomes big
- How big? Very big: that we cannot keep in memory all different 2-item
 combinations, to update their counters

How can we find new non-trivial knowledge

- Use confidence?
- The confidence is not-antimonotone, so the algorithm cannot prune any item combination and needs to compute confidence for each possible combination of items
- Computationally infeasible

Pitfalls of confidence

- Suppose we managed to rank all possible association rules by confidence
- How good are the top-confidence rules?

Evaluation of association between items: contingency table

- Given an itemset $\{X, Y\}$, the information about the relationship between X and Y can be obtained from a contingency table

Contingency table for $\{\mathrm{X}, \mathrm{Y}\}$

	Y	Y	
X	f_{11}	f_{10}	f_{1+}
X	f_{01}	f_{00}	f_{0+}
	f_{+1}	f_{+0}	$\|\mathrm{~T}\|$

f_{11} : support count of X and Y
f_{10} : support count of X and \bar{Y}
f_{01} : support count of \bar{X} and Y
f_{00} : support count of \bar{X} and

Example: tea and coffee

	Coffee	\neg Coffee	
Tea	150	50	200
\neg Tea	750	150	900
	900	200	1100

Example: tea and coffee

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{T}	150	50	200
$\neg \mathbf{T}$	750	150	900
	900	200	1100

- Confidence of rule $\mathrm{T} \rightarrow \mathrm{C}$ (conditional probability $\mathrm{P}(\mathrm{C} \mid \mathrm{T})$): $\sup (T$ and $C) / \sup (T)=150 / 200=0.75$

Example: tea and coffee

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{T}	150	50	200
$\neg \mathbf{T}$	750	150	900
	900	200	1100

- Confidence of rule $\mathrm{T} \rightarrow \mathrm{C}$ $P(C \mid T)=0.75$

However, $P(C)=900 / 1100=0.85$

Example: tea and coffee

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{T}	150	50	200
$\neg \mathbf{T}$	750	150	900
	900	200	1100

- Confidence of rule $\mathrm{T} \rightarrow \mathrm{C} \quad \mathrm{P}(\mathrm{C} \mid \mathrm{T})=0.75$ However, P(C)=900/1100=0.85

Although confidence is high, the rule is misleading:
$\mathrm{P}(\mathrm{C} \mid \neg \mathrm{T})=750 / 900=0.83$
The probability that the person drinks coffee is not increased due to the fact that he drinks tea: quite the opposite knowing that someone is a tea-lover decreases the probability that he is also a coffee-addict

Why did it happen?

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{T}	150	50	200
$\neg \mathbf{T}$	750	150	900
	900	200	1100

- Confidence of rule $T \rightarrow C \quad P(C \mid T)=0.75$

Because the support counts are skewed: much more people drink coffee (900) than tea (200) and confidence takes into account only onedirectional conditional probability

We want to evaluate mutual dependence (association, correlation)

- Not top-frequent
- Not top-confident
- Idea: apply statistical independence test

Statistical measure of association (correlation)-Lift

- If the appearance of T is statistically independent of appearance of C , then the probability to find them in the same trial (transaction) is $\mathrm{P}(\mathrm{C}) \times \mathrm{P}(\mathrm{T})$
- We expect to find both C and T with support $\mathrm{P}(\mathrm{C}) \times \mathrm{P}(\mathrm{T})$ - expected support
- If actual support $P(C \wedge T)$
$P(C \wedge T)=P(C) \times P(T)=>$ Statistical independence
$P(C \wedge T)>P(C) \times P(T)=>$ Positive association
$P(C \wedge T)<P(C) \times P(T)=>$ Negative association

Lift (Interest Factor)

- Measure that takes into account statistical dependence

$$
\text { Interest }=\frac{P(A \wedge B)}{P(A) P(B)}=\frac{f_{11} / N}{\left(f_{1+} / N\right) \times\left(f_{+1} / N\right)}=\frac{N \times f_{11}}{f_{1+} \times f_{+1}}
$$

- Interest factor compares the frequency of a pattern against a baseline frequency computed under the statistical independence assumption.
- The baseline frequency for a pair of mutually independent variables is:
$\frac{f_{11}}{N}=\frac{f_{1+}}{N} \times \frac{f_{+1}}{N} \quad$ Or equivalently $\quad f_{11}=\frac{f_{1+} \times f_{+1}}{N}$

Interest Equation

- Fraction f_{11} / N is an estimate for the joint probability $\mathrm{P}(\mathrm{A}, \mathrm{B})$, while f_{1+} / N and f_{+1} / N are the estimates for $P(A)$ and $P(B)$, respectively.
- If A and B are statistically independent, then $P(A \wedge B)=P(A) \times P(B)$, thus the Interest is 1 .
$I(A, B) \begin{cases}=1, & \text { if } A \text { and } B \text { are independent; } \\ >1, & \text { if } A \text { and } B \text { are positively correlated; } \\ <1, & \text { if } A \text { and } B \text { are negatively correlated. }\end{cases}$

Example: tea and coffee

	Coffee	\neg Coffee	
Tea	150	50	200
\neg Tea	750	150	900
	900	200	1100

Association Rule: Tea \rightarrow Coffee

Interest $=150 * 1100 /(200 * 900)=0.92$
(<1, therefore they are negatively correlated - almost independent)

Problems with Lift

- Consider two contingency tables from the same dataset:

Coffee (C) and milk (M)

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{M}	10,000	1,000	11,000
$\neg \mathbf{M}$	1,000	88,000	89,000
	11,000	89,000	100,000

Popcorn (P) and soda (S)

	\mathbf{P}	$\neg \mathbf{P}$	
\mathbf{S}	1,000	1,000	2,000
$\neg \mathbf{S}$	1,000	97,000	98,000
	2,000	98,000	100,000

Which items are more correlated: M and C or P and S ?

Problems with Lift

Coffee (C) and milk (M)

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{M}	10,000	1,000	11,000
$\neg \mathbf{M}$	1,000	88,000	89,000
	11,000	89,000	100,000

Popcorn (P) and soda (S)

	\mathbf{P}	$\neg \mathbf{P}$	
\mathbf{S}	1,000	1,000	2,000
$\neg \mathbf{S}$	1,000	97,000	98,000
	2,000	98,000	100,000

Well,
Lift $(M, C)=8.26$
Lift $(P, S)=25.00$

Problems with Lift

Coffee (C) and milk (M)

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{M}	10,000	1,000	11,000
$\neg \mathbf{M}$	1,000	88,000	89,000
	11,000	89,000	100,000

Popcorn (P) and soda (S)

	\mathbf{P}	$\neg \mathbf{P}$	
\mathbf{S}	1,000	1,000	2,000
$\neg \mathbf{S}$	1,000	97,000	98,000
	2,000	98,000	100,000

Lift $(\mathrm{M}, \mathrm{C})=8.26$
Lift $(P, S)=25.00$
Why did that happen?
Because probabilities $P(S)=P(P)=0.02$ are very low comparing with probabilities
$P(C)=P(M)=0.11$
By multiplying very low probabilities, we get very-very low expected probability and then any number of items occurring together will be larger than expected

Problems with Lift

Coffee (C) and milk (M)

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{M}	10,000	1,000	11,000
$\neg \mathbf{M}$	1,000	88,000	89,000
	11,000	89,000	100,000

Popcorn (P) and soda (S)

	\mathbf{P}	$\neg \mathbf{P}$	
\mathbf{S}	1,000	1,000	2,000
$\neg \mathbf{S}$	1,000	97,000	98,000
	2,000	98,000	100,000

Lift $(\mathrm{M}, \mathrm{C})=8.26$
Lift $(P, S)=25.00$
But most of the items in a large database have very low supports comparing with the total number of transactions

Conclusion: we are dealing with small probability events, where regular statistical methods might not be applicable

More problems with Lift: positive or negative?

- Consider two contingency tables for C and M from 2 different datasets:

Dataset 1

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{M}	400	600	1,000
$\neg \mathbf{M}$	600	18,400	19,000
	1,000	19,000	20,000

According to definition of Lift:
DB1: \quad expected (M and C) $=1000 / 20000 \times 1000 / 20000=0.0025$
actual (M and C) $=400 / 20000=0.02$
Lift $=8.0$ (positive correlation)
DB2: expected (M and C) $=1000 / 2000 \times 1000 / 2000=0.25$
actual (M and C) $=400 / 2000=0.2$
Lift $=0.8$ (negative correlation)

More problems with Lift: positive or negative?

Dataset 1

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{M}	400	600	1,000
$\neg \mathbf{M}$	600	18,400	19,000
	1,000	19,000	20,000

Dataset 2

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{M}	400	600	1,000
$\neg \mathbf{M}$	600	1,300	1,900
	1,000	1,900	2,000

But nothing has changed in connections between C and M
The changes are in the count of transactions which do not contain neither C nor M.

Such transactions are called null-transactions with respect to C and M
We want the measure which does not depend on null-transactions: nulltransaction invariant. Which depends only on counts of items in the current itemset

What are we looking for?

The area corresponds to support counts

or

Possible null-invariant measure 1:

 Jaccard indexJaccard index: intersection/union

$$
\mathrm{JI}(\mathrm{~A}, \mathrm{~B})=\sup (\mathrm{A} \text { and } \mathrm{B}) /[\sup (\mathrm{A})+\sup (\mathrm{B})-\sup (\mathrm{A} \text { and } \mathrm{B})]
$$

Possible null-invariant measure 2: Kulczynsky

Kulczynsky: arithmetic mean of conditional probabilities
$\operatorname{Kulc}(A, B)=[P(A \mid B)+P(B \mid A)] / 2$

In terms of support counts:
$\operatorname{Kulc}(A, B)=1 / 2[\sup (A$ and $B) / \sup (A)+\sup (A$ and $B) / \sup (B)]$

Possible null-invariant measure 3: Cosine

Cosine: geometric mean of conditional probabilities
$\operatorname{Cos}(A, B)=\operatorname{sqrt}[P(A \mid B) \times P(B \mid A)]$

In terms of support counts:

$\operatorname{Cos}(A, B)=\sup (A$ and $B) / \operatorname{sqrt}[\sup (A) x \sup (B)]$

Kulc on the same dataset

- Consider two contingency tables from the same dataset:

Coffee (C) and milk (M)

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{M}	10,000	1,000	11,000
$\neg \mathbf{M}$	1,000	88,000	89,000
	11,000	89,000	100,000

	\mathbf{P}	$\neg \mathbf{P}$	
\mathbf{S}	1,000	1,000	2,000
$\neg \mathbf{S}$	1,000	97,000	98,000
	2,000	98,000	100,000

Which items are more correlated: M and C or P and S ?

Kulc on the same dataset

Coffee (C) and milk (M)

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{M}	10,000	1,000	11,000
$\neg \mathbf{M}$	1,000	88,000	89,000
	11,000	89,000	100,000

Kulc $(C, M)=1 / 2 *(10000 / 11000+10000 / 11000)=0.91$

Kulc $(P, S)=1 / 2 *(1000 / 2000+1000 / 2000)=0.5$

Lift $(M, C)=8.26$
Lift $(P, S)=25.00$

Kulc on two datasets: positive or negative?

Dataset 1

	\mathbf{C}	$\neg \mathbf{C}$	
\mathbf{M}	400	600	1,000
$\neg \mathbf{M}$	600	18,400	19,000
	1,000	19,000	20,000

DB1: \quad Kulc $(C, M)=1 / 2 *(400 / 1000+400 / 1000)=0.4$
DB2: Kulc $(C, M)=1 / 2 *(400 / 1000+400 / 1000)=0.4$
DB1: Lift $=8.0$ (positive correlation)
DB2: Lift $=0.8$ (negative correlation)

Problems begin

- We found decent null-invariant measures to evaluate the quality of associations (correlations) between items
- The problem: how do we extract top-ranked correlations from large transactional database?
- This is the area of the current research

We were able to discover interesting strong correlations with low supports

$\left.\begin{array}{l|l|l|l}\hline & \begin{array}{l}\text { \{Steven M. Beitzel, Eric C. Jensen }\} \\ \text { DBLP AUTHORS }\end{array} & 25 & 1.00 \\ & \text { \{In-Su Kang, Seung-Hoon Na }\}\end{array}\right\}$
*Efficient mining of top correlated patterns based on null-invariant measures by S. Kim et al., 2011

