Frequent itemsets: FP-growth

Lecture 15

Main ideas

- Compressed index of transactions - Frequent Pattern tree - FP-tree
- Frequent patterns are extracted from FP-tree recursively - by projections for each item

FP-tree construction

1. Scan DB, count C1, produce F1
2. Sort items in F1 in decreasing order of support counts. Create indexing header for this sorted list
3. Second DB scan, sort frequent itemsets in each transaction in order corresponding to the header, map each transaction to a path in FP-tree, updating counts of items encountered on this path
4. Preserve links for the same item from the header table to all occurrences of this item in different paths

2. Header table

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, C, D, E\}$
4	$\{A, D, E\}$
5	$\{A, B, C\}$
6	$\{A, B, C, D\}$
7	$\{B, C\}$
8	$\{A, B, C\}$
9	$\{A, B, D\}$
10	$\{B, C, E\}$

Header

B	8		
A	7		
C	7		
D	5		
E	3	\quad	Decreasing
:---			
order of			
support			
counts			

Inserting transactions: TID 1

Inserting transactions: TID 2

Inserting transactions: TID 3

Inserting transactions: TID 3

TID	Items
1	$\{\mathrm{~A}, \mathrm{~B}\}$
2	$\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
3	$\{\mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
4	$\{\mathrm{~A}, \mathrm{D}, \mathrm{E}\}$
5	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
6	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
7	$\{\mathrm{~B}, \mathrm{C}\}$
8	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
9	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$
10	$\{\mathrm{~B}, \mathrm{C}, \mathrm{E}\}$

And of course the chain pointers

Final FP-tree

The size of FP-tree

- Best case: identical items in all transactions 1 path
- Worst case: no overlapping items in transactions - the tree is as big as the original database
- Normal case: the size is significantly smaller, and in many cases fits into the main memory

Sorting heuristic

If the sorting is reversed (in ascending order of support counts), then the tree is in most cases much larger

Mining frequent patterns from FP-tree:

FP-growth algorithm

- Strategy: divide-and-conquer: splits the problem into smaller sub-problems
- Finds frequent itemsets ending in particular item by processing all paths ending in E first, then paths ending in D etc.
- To mine frequent itemsets ending in E (with

Header	
B	8
A	7
C	7
D	5
E	3

- The paths are accessed rapidly due to the chain pointers

Paths containing node E

Conditional FP-tree on E: projection on E

- Using paths containing E , we perform two operations:
- Collect counts of all 1-itemsets in the projection, build a new header
- Build a smaller FP-tree by using each path as an input transaction, reading a path bottom-up

Conditional on E : header table

Header	
A	2
C	2
D	2
B	1

At this point we know that $\{A, E\},\{C, E\}$ and $\{D, E\}$ are frequent itemsets

Frequent itemsets ending in $E:\{A, E\},\{C, E\},\{D, E\}$

Conditional on E: insert transactions 1

Header	
A	2
C	2
D	2

Frequent itemsets ending in $E:\{A, E\},\{C, E\},\{D, E\}$

Conditional on E: insert transactions 2

Frequent itemsets ending in $E:\{A, E\},\{C, E\},\{D, E\}$

Conditional on E: insert transactions 3

Frequent itemsets ending in $E:\{A, E\},\{C, E\},\{D, E\}$

Mine FP-tree conditional on E :

 recursion

- Continue the same process treating FP-tree (E) as a regular FP-tree
- Remember that these are frequent itemsets ending in E

Frequent itemsets ending in $E:\{A, E\},\{C, E\},\{D, E\}$

Conditional on DE: header

Header	
A	2
E	1

At this point we know that $\{A, D, E\}$ is frequent

Frequent itemsets ending in $E:\{A, E\},\{C, E\},\{D, E\}+\{A, D, E\}$

Conditional on DE: insert transaction 1

Frequent itemsets ending in $E:\{A, E\},\{C, E\},\{D, E\},\{A, D, E\}$

Conditional on DE: insert transaction 2

End of recursion: single path

We have collected all frequent itemsets which contain item E

Frequent itemsets ending in $\mathrm{E}:\{\mathrm{A}, \mathrm{E}\},\{\mathrm{C}, \mathrm{E}\},\{\mathrm{D}, \mathrm{E}\},\{\mathrm{A}, \mathrm{D}, \mathrm{E}\}$

Back to mine FP-tree conditional on E:

 recursion, but now D is removed

- Now we build an FPtree conditional on (CE) and treat it as a regular FP-tree
- Remember that these are frequent itemsets ending in CE
- No frequent itemsets

Back to the original FP-tree: projection on D (with nodes E removed)

Conditional on D: header table

Header	
A	4
B	3
C	3

At this point we know that $\{A, D\}$, $\{B, D\}$ and $\{C, D\}$ are frequent

Frequent itemsets ending in $E:\{A, E\},\{C, E\},\{D, E\},\{A, D, E\}$
Frequent itemsets ending in $D:\{A, D\},\{B, D\},\{C, D\}$

Conditional on D: FP-tree

Continue mining FP-tree conditional on D , until a single path left ...
And the same for C , A, B in this order

Conditional on D: FP-tree

Continue mining FP-tree conditional on D, until a single path left ...
And the same for C, A, B in this order

Frequent itemsets ending in $E:\{A, E\},\{C, E\},\{D, E\},\{A, D, E\}$
Frequent itemsets ending in $D:\{A, D\},\{B, D\},\{C, D\}$

FP-Tree Another Example

Transactions

A B CEFO
A C G
EI
ACDEG
ACEGL
E J
ABCEFP
ACD
ACEGM
ACEGN

Freq. 1-Itemsets.
Supp. Count ≥ 2

$\mathrm{A}: 8$	
$\mathrm{C}: 8$	
$\mathrm{E}: 8$	
$\mathrm{G}: 5$	
$\mathrm{~B}: 2$	
$\mathrm{D}: 2$	
$\mathrm{~F}: 2$	

Transactions with items sorted based on frequencies, and ignoring the infrequent items.
ACEBF
AC G
E
ACEGD
ACEG
E
ACEBF
ACD
ACEG
ACEG

FP-Tree after reading $1^{\text {st }}$ transaction

ACEBF AC G

E
ACEGD ACEG

E
ACEBF
ACD
ACEG
ACEG

FP-Tree after reading $2^{\text {nd }}$ transaction

ACEBF
AC G
E
ACEGD ACEG

E
ACEBF
ACD
ACEG
ACEG

FP-Tree after reading $3^{\text {rd }}$ transaction

ACEBF AC G E
ACEGD ACEG

E
ACEBF
ACD
ACEG
ACEG

FP-Tree after reading $4^{\text {th }}$ transaction

ACEBF AC G

E
ACEGD
ACEG
E
ACEBF
ACD
ACEG
ACEG

FP-Tree after reading $5^{\text {th }}$ transaction

ACEBF AC G

E
ACEGD
ACEG
E
ACEBF
ACD
ACEG
ACEG

FP-Tree after reading $6^{\text {th }}$ transaction

ACEBF AC G

E
ACEGD ACEG E
ACEBF
ACD
ACEG
ACEG

FP-Tree after reading $7^{\text {th }}$ transaction

ACEBF AC G

E
ACEGD ACEG

E
ACEBF
ACD
ACEG
ACEG

FP-Tree after reading $8^{\text {th }}$ transaction

ACEBF AC G

E
ACEGD ACEG

E
ACEBF
ACD
ACEG
ACEG

FP-Tree after reading $9^{\text {th }}$ transaction

ACEBF AC G

E
ACEGD ACEG

E
ACEBF
ACD
ACEG
ACEG

FP-Tree after reading $10^{\text {th }}$ transaction

ACEBF AC G

E
ACEGD ACEG

E
ACEBF
ACD
ACEG
ACEG

Conditional FP-Trees

Build the conditional FP-Tree for each of the items.
For this:

1. Find the paths containing on focus item. With those paths we build the conditional FP-Tree for the item.
2. Read again the tree to determine the new counts of the items along those paths. Build a new header.
3. Insert the paths in the conditional FP-Tree according to the new order.

Conditional FP-Tree for F

There is only a single path containing F

Recursion

- We continue recursively on the conditional FP-Tree for F.
- However, when the tree is just a single path it is the base case for the recursion.
- So, we just produce all the subsets of the items on this path merged with F .
\{F\} \{A,F\} \{C,F\} \{E,F\} \{B,F\} $\{\mathrm{A}, \mathrm{C}, \mathrm{F}\}, \ldots$,
\{A,C,E,F\}

Conditional FP-Tree for D

The other items are removed as infrequent.

The tree is just a single path; it is the base case for the recursion. So, we just produce all the subsets of the items on this path merged with D.

$$
\{\mathrm{D}\}\{\mathrm{A}, \mathrm{D}\}\{\mathrm{C}, \mathrm{D}\}\{\mathrm{A}, \mathrm{C}, \mathrm{D}\}
$$

Paths containing D after updating the counts

