## Generating association rules

Lecture 14

# Mining Association Rules

- Two-step approach:
  - 1. Frequent Itemset Generation
    - Generate all itemsets whose support ≥ minsup (these itemsets are called *frequent itemset*)
  - 2. Rule Generation
    - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset (these rules are called *strong rules*)

We focus on **rule generation from frequent** itemsets.

### **Rule Generation**

 An association rule can be extracted by partitioning a frequent itemset Y into two nonempty subsets, X and Y -X, such that

#### $X \rightarrow Y - X$

satisfies the confidence threshold.

- Each frequent *k*-itemset, *Y*, can produce up to  $2^{k}-2$  association rules
  - ignoring rules that have empty antecedents or consequents.

## **Rule Generation**

#### Example

 $\{1, 2\} \rightarrow \{3\},\$ 

 $\{1, 3\} \rightarrow \{2\},\$ 

 $\{2, 3\} \rightarrow \{1\},\$ 

 $\{1\} \rightarrow \{2, 3\},\$ 

 $\{2\} \rightarrow \{1, 3\},\$ 

 $\{3\} \rightarrow \{1, 2\}.$ 

Let  $Y = \{1, 2, 3\}$  be a frequent itemset.

Six candidate association rules can be generated from Y:

Computing the confidence of an association rule does not require additional scans of the database.

Consider  $\{1, 2\} \rightarrow \{3\}$ .

The confidence is  $\sigma$  ({1, 2, 3}) /  $\sigma$  ({1, 2})

Because {1, 2, 3} is frequent, the antimonotone property of support ensures that {1, 2} must be frequent, too, and we store the supports of frequent itemsets.

Confidence, unlike support is not anti-monotone: Knowing that  $c(X \rightarrow Y) < minConfidence$ , we cannot tell whether  $c(X' \rightarrow Y') < minConfidence$ or  $c(X' \rightarrow Y') > minConfidence$ , for  $X' \subseteq X$  and  $Y' \subseteq Y$ 

Do we need to compute confidence for all possible rules for each frequent itemset Y?

# Confidence-based rule pruning

#### Theorem.

- If a rule  $X \rightarrow Y X$  does not satisfy the confidence threshold,
  - **then** any rule  $X' \rightarrow Y X'$ , where X' is a subset of X, cannot satisfy the confidence threshold as well.



# Confidence-based rule pruning

#### Proof.

Consider the following two rules:  $X' \rightarrow Y - X'$  and  $X \rightarrow Y - X$ , where  $X' \subseteq X$ .

The confidence of the rules are  $\sigma(Y) / \sigma(X')$ and  $\sigma(Y) / \sigma(X)$ , respectively. Since X' is a subset of X,  $\sigma(X') \ge \sigma(X)$ . Therefore, the former rule cannot have a higher confidence than the latter rule.



#### **Confidence-Based Pruning**

• Observe that:

 $X' \subseteq X$  implies that  $Y - X' \supseteq Y - X$ 





# Algorithm for rule generation

- Initially, all the highconfidence rules that have only one item in the rule consequent are extracted.
- These rules are then used to generate new candidate rules.
- For example, if
  - {acd} → {b} and {abd} → {c} are highconfidence rules, then the candidate rule {ad} → {bc} is generated by merging the consequents of both rules.

# Example

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

Items (1-itemsets)



Triplets (3-itemsets)

| Itemset             | Count |
|---------------------|-------|
| {Bread,Milk,Diaper} | 3     |

High-confidence rules with 1 item in consequent

{Bread,Milk}  $\rightarrow$  {Diaper} (confidence = 3/3) threshold=50% {Bread,Diaper}  $\rightarrow$  {Milk} (confidence = 3/3) {Diaper,Milk}  $\rightarrow$  {Bread} (confidence = 3/3)

## Example

#### Merge:

...

{Bread, Milk}  $\rightarrow$  {Diaper} {Bread, Diaper}  $\rightarrow$  {Milk}

{Bread}  $\rightarrow$  {Diaper, Milk} (confidence = 3/4)