
Generating frequent itemsets

Lecture 13



Mining Association Rules
• Two-step approach: 

1. Frequent Itemset Generation

– Generate all itemsets whose support  minsup (these 
itemsets are called frequent itemset)

2. Rule Generation

– Generate high confidence rules from each frequent 
itemset, where each rule is a binary partitioning of a 
frequent itemset (these rules are called strong rules)

We focus first on frequent itemset generation.



Candidates for frequent itemsets
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are 
2d possible candidate 
itemsets



Frequent Itemset Generation: 
brute force

• Each itemset in the lattice is a candidate frequent itemset
• Count the support of each candidate by scanning the database
• Match each transaction against every candidate
• Complexity ~ O(NMw) => Expensive since M = 2d !!!

– w is max transaction width.

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions List of

Candidates

M

w



Frequent itemset generation: 
Apriori algorithm

• The name Apriori is based on the fact that we use 
prior knowledge about k-itemsets in order to 
prune candidate k+1-itemsets

• The idea: level-wise processing
– find frequent 1-itemsets: F1

– F1 is used to find F2

– Fk is used to find Fk+1  

• The efficiency is based on anti-monotone
property of support: if a set cannot pass the test, 
all its supersets will fail the same test



Apriori principle

• All subsets of a frequent itemset A must also 
be frequent

• If itemset A appears in less than minsup
fraction of transactions, then itemset A with 
one more item added cannot occur more 
frequently than A. Therefore, if A is not 
frequent, all its supersets are not frequent as 
well 



Found to be 
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned 
supersets



Illustrating Apriori Principle
Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Items (1-itemsets)

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)Minimum support 

count = 3

If every subset is considered, 
6C1 + 6C2 + 6C3 = 41

With support-based pruning,
6 + 6 + 1 = 13

Itemset Count 

{Bread,Milk,Diaper} 3 

 

Triplets (3-itemsets)

With the Apriori principle we need to keep 
only this triplet, because it’s the only one 
whose subsets are all frequent. 



Apriori Algorithm
• Let k=1

• Generate set F1 of frequent 1-itemsets 

• Repeat until Fk is empty

• k=k+1

• Generate length-k candidate itemsets Ck from length-k-1
frequent itemsets Fk-1

• Prune candidate itemsets containing subsets of length-k-
1 that are infrequent 

• Count the support of each candidate in Ck by scanning 
the DB and eliminate candidates that are infrequent, 
leaving only those that are frequent - Fk



Candidate generation and prunning

Many ways to generate candidate itemsets. 
An effective candidate generation procedure: 

1. Should avoid generating too many unnecessary candidates. 
– A candidate itemset is unnecessary if at least one of its subsets is 

infrequent. 

2. Must ensure that the candidate set is complete, 
– i.e., no frequent itemsets are left out by the candidate 

generation procedure. 

3. Should not generate the same candidate itemset more than 
once. 
– E.g., the candidate itemset {a, b, c, d} can be generated in many 

ways---
• by merging {a, b, c} with {d},
• {c} with {a, b, d}, etc. 



Generating Ck+1 from Fk: brute force 
• A bruteforce method considers every frequent k-itemset

as a potential candidate and then applies the candidate 
pruning step to remove any unnecessary candidates.



Fk-1F1 Method
• Extend each frequent (k - 1)itemset with a 

frequent 1-itemset.

• Is it complete?
The procedure is complete because every frequent k--
itemset is composed of a frequent (k - 1)itemset and a 
frequent 1-itemset.

• However, it doesn’t prevent the same 
candidate itemset from being generated 
more than once. 

E.g., {Bread, Diapers, Milk} can be generated by 
merging 

• {Bread, Diapers} with {Milk},

• {Bread, Milk} with {Diapers}, or 

• {Diapers, Milk} with {Bread}.



Lexicographic Order

• Avoid generating duplicate candidates by ensuring that the items 
in each frequent itemset are kept sorted in their lexicographic 
order. 

• Each frequent (k-1)-itemset X is then extended with frequent 
items that are lexicographically larger than the items in X. 

• For example, the itemset {Bread, Diapers} can be augmented with 
{Milk} since Milk is lexicographically larger than Bread and 
Diapers. 

• However, we don’t augment {Diapers, Milk} with {Bread} nor 
{Bread, Milk} with {Diapers} because they violate the 
lexicographic ordering condition.

• Is it complete?



Lexicographic Order - Completeness
• Is it complete?

Let (i1,…, ik-1, ik) be a frequent k-itemset sorted in lexicographic 
order. 

Since it is frequent, by the Apriori principle, (i1,…, ik-1) and (ik) are 
frequent as well. 

(i1,…, ik-1) Fk-1 and (ik) F1. 

Since, (ik) is lexicographically bigger than i1,…, ik-1, we have that (i1,…, 
ik-1) would be joined with (ik) for giving (i1,…, ik-1, ik) as a candidate k-
itemset.



Still too many candidates…
• E.g. merging {Beer, Diapers} with {Milk} is unnecessary because 

one of its subsets, {Beer, Milk}, is infrequent. 

• For a candidate k-itemset to be worthy, 

– every item in the candidate must be contained in at least k-1
of the frequent (k-1)-itemsets. 

– {Beer, Diapers, Milk} is a viable candidate 3-itemset only if 
every item in the candidate, including Beer, is contained in at 
least 2 frequent 2itemsets. 

Since there is only one frequent 2-itemset containing Beer, 
all candidate 3-itemsets involving Beer must be infrequent. 

• Why?

Because each of k-1-subsets containing an item must be frequent.



Fk-1F1



Fk-1Fk-1 Method
• Merge a pair of frequent (k-1)-itemsets only if their first k-2 items are 

identical.

 E.g. frequent itemsets {Bread, Diapers} and {Bread, Milk} are merged to form 
a candidate 3itemset {Bread, Diapers, Milk}.

 We don’t merge {Beer, Diapers} with {Diapers, Milk} because the first item in 
both itemsets is different. 

 Indeed, if {Beer, Diapers, Milk} is a viable candidate, it would have been 

obtained by merging {Beer, Diapers} with {Beer, Milk} instead.

• This illustrates both the completeness of the candidate generation procedure 
and the advantages of using lexicographic ordering to prevent duplicate 
candidates. 

Pruning?

• Because each candidate is obtained by merging a pair of frequent (k-1) -
itemsets, an additional candidate pruning step is needed to ensure that the 
remaining k-2 subsets of k-1 elements are frequent. 



Fk-1Fk-1



Example: Apriori candidate generation

Find all frequent itemsets from the following data. 
Min support count threshold=2 

TID Extra cheese Onions Peppers Mushrooms Olives Anchovy

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1 1

6 1 1 1

Pizza toppings dataset

Binary data format



2. Count 1-item frequent itemsets

TID A B C D E F

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1 1

6 1 1 1

σ 4 4 1 4 2 1

Support 
count

Frequent 1-itemsets: 
{A}, {B}, {D}, {E}



3. Generate candidate 2-itemsets

A B D E

A

B

D

E

Candidate 2-itemsets C2

{A,B} {A,D} {A,E}
{B,D} {B,E}
{D,E}



4. Scan DB, count candidates

TID A B C D E F

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1 1

6 1 1 1

A B D E

A 3 3 2

B 2 2

D 1

E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}
{D,E}



2 ways of candidate generation

a) Ck=Fk x F1

b) Ck=Fk-1 x Fk-1

In both cases itemsets are lexicographically 
sorted: we may extend existing itemset only 
with an item which is lexicographically largest 
among all items in Fk-1



5a. Generate C3=F2xF1

F2\F1 A B D E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

Frequent 1-itemsets: 
{A}, {B}, {D}, {E}



5a. Generate C3=F2xF1

F2\F1 A B D E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

Frequent 1-itemsets: 
{A}, {B}, {D}, {E}

Candidate 3-itemsets C3

{A,B,D} {A,B,E} {A,D,E} {B,D,E}



5b. Generate C3=F2xF2

F2\F2 A,B A,D A,E B,D B,E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

The first item should be 
identical in order to join



5b. Generate C3=F2xF2

F2\F2 A,B A,D A,E B,D B,E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

The first item should be 
identical in order to join

Candidate 3-itemsets C3

{A,B,D} {A,B,E} {A,D,E} {B,D,E}



6a. Prune C3 before counting

F2\F1 A B D E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

Frequent 1-itemsets: 
{A}, {B}, {D}, {E}

Candidate 3-itemsets C3

{A,B,D} {A,B,E} {A,D,E} {B,D,E}



6. Prune C3 before counting

F2\F1 A B D E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

Frequent 1-itemsets: 
{A}, {B}, {D}, {E}

Candidate 3-itemsets C3

{A,B,D} {A,B,E} {A,D,E} {B,D,E}



7. Count candidates

F2\F1 A B D E

A,B 2 2

A,D

A,E

B,D

B,E

TID A B C D E F

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1 1

6 1 1 1

Frequent 3-itemsets F3

{A,B,D} {A,B,E}



8a. Generate candidates C4=F3xF1

F3\F1 A B D E

A,B,D

A,B,E

The only candidate 4-itemset:
{A,B,D,E} 
Do we need to count its support?
Can it be pruned?



Solution: all frequent k-itemsets, k>=2

• {A,B} {A,D} {A,E} {B,D} {B,E}

• {A,B,D} {A,B,E}



Apriori Algorithm. Summary

• Generate F1

• Let k=1

• Repeat until Fk is empty

• k=k+1

• Generate Ck from Fk-1

• Prune Ck containing subsets that are not in Fk-1

• Count support of each candidate in Ck  by scanning DB

• Eliminate infrequent candidates, leaving Fk

Reduces the number of candidates to be counted against the 
database



Counting candidates

• Generate F1

• Let k=1

• Repeat until Fk is empty

• k=k+1

• Generate Ck from Fk-1

• Prune Ck containing subsets that are not in Fk-1

• Count support of each candidate in Ck  by scanning DB

• Eliminate infrequent candidates, leaving Fk

Goal: to reduce the number of comparisons by avoiding matching 
each candidate against each transaction



Counting candidates: brute-force

• For each transaction: loop through all candidates and 
increment count if a candidate is found in the transaction

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions List of

Candidates

M

w



Counting candidates: enumerating 
items in transaction

• For a transaction of 6 items the number of possible 3-itemsets is C3,5=10. If 
the number of candidates is significantly larger than transaction width, we 
enumerate all possible k-itemsets in each transaction and increment 
support count only for the corresponding candidates 

1  2  3  5  6

Transaction, t

2  3  5  61 3  5  62

5  61 33  5  61 2 61 5 5  62 3 62 5

5  63

1 2 3

1 2 5

1 2 6

1 3 5

1 3 6
1 5 6

2 3 5

2 3 6
2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5



Counting candidates: enumerating 
items in transaction

• All 3-itemsets must begin with 1,2, or 3. Why? 

1  2  3  5  6

Transaction, t

2  3  5  61 3  5  62

5  61 33  5  61 2 61 5 5  62 3 62 5

5  63

1 2 3

1 2 5

1 2 6

1 3 5

1 3 6
1 5 6

2 3 5

2 3 6
2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5



Counting candidates: enumerating 
items in transaction

• The number of ways to select a second item: 1 can be followed by 
2,3, or 5. Why not 6?

1  2  3  5  6

Transaction, t

2  3  5  61 3  5  62

5  61 33  5  61 2 61 5 5  62 3 62 5

5  63

1 2 3

1 2 5

1 2 6

1 3 5

1 3 6
1 5 6

2 3 5

2 3 6
2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5



Matching enumerated itemsets to 
candidates: hash tree

• At each level of Apriori algorithm, candidates are 
hashed into separate buckets. The enumerated 
itemsets in each transaction are also hashed using 
the same hashing function. The comparison is only 
within several buckets, instead of the entire 
candidate set.



Matching enumerated itemsets to 
candidates: hash tree

• At each level of Apriori algorithm, candidates are hashed into 
separate buckets. The enumerated itemsets in each 
transaction are also hashed using the same hashing function. 
The comparison is only within several buckets, instead of the 
entire candidate set.

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions Hash Structure

k

Buckets



Generate Hash Tree

2 3 4

5 6 7

1 4 5
1 3 6

1 2 4

4 5 7 1 2 5

4 5 8

1 5 9

3 4 5 3 5 6

3 5 7

6 8 9

3 6 7

3 6 8

1,4,7

2,5,8

3,6,9

Hash function

You need:

• A hash function (e.g. h(p)=p mod 3)

• Max leaf size: max number of itemsets stored in a leaf node (if number of 
candidate itemsets exceeds max leaf size, split the node)

Suppose you have 15 candidate itemsets of length 3 and leaf size is 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},  {3 
5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

1

2

3



Generate Hash Tree

1,4,7

2,5,8

3,6,9

Hash function

Suppose you have 15 candidate itemsets of length 3 and leaf size is 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},  {3 
5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

2 3 4

5 6 7
1 4 5

1 3 6

1 2 4

4 5 7

1 2 5

4 5 8

1 5 9

3 5 6

3 5 7

6 8 9

3 4 5

3 6 7

3 6 8
Split nodes with more than 3 

candidates 
using the second item



Generate Hash Tree

1,4,7

2,5,8

3,6,9

Hash function

Suppose you have 15 candidate itemsets of length 3 and leaf size is 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},  {3 
5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

2 3 4

5 6 7 3 5 6

3 5 7

6 8 9

3 4 5

3 6 7

3 6 8

1 2 4

4 5 7

1 2 5

4 5 8

1 5 9

1 4 5
1 3 6

Now split nodes
using the third item



Generate Hash Tree

1,4,7

2,5,8

3,6,9

Hash function

Suppose you have 15 candidate itemsets of length 3 and leaf size is 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},  {3 
5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

2 3 4

5 6 7 3 5 6

3 5 7

6 8 9

3 4 5

3 6 7

3 6 8

1 4 5
1 3 6

1 2 4

4 5 7 1 2 5

4 5 8

1 5 9

Now, split this similarly.



Matching transaction items to the 
hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1 2 3 5 6

1 + 2 3 5 6
3 5 62 +

5 63 +

1,4,7

2,5,8

3,6,9

Hash Functiontransaction



Matching transaction items to the 
hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 7 out of 15
candidates



Compact Representation of Frequent 
Itemsets

• Representative set of frequent itemsets, from 
which all other frequent itemsets can be 
derived

– Maximal frequent itemsets

– Closed frequent itemsets



Maximal Frequent Itemsets

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD

E
Border

Infrequent 
Itemsets

Maximal 
Itemsets

An itemset is maximal frequent if none of its immediate supersets is 
frequent

Maximal frequent 
itemsets form the 
smallest set of 
itemsets from which 
all frequent itemsets 
can be derived.



Maximal Frequent Itemsets
• Despite providing a compact representation, maximal 

frequent itemsets do not contain the support information of 
their subsets. 

– For example, the support of the maximal frequent itemsets
{a, c, e}, {a, d}, and {b,c,d,e} do not provide any hint 

about the support of their subsets. 

• An additional pass over the data set is therefore needed to 
determine the support counts of the nonmaximal frequent 
itemsets. 

• It might be desirable to have a minimal representation of 
frequent itemsets that preserves the support information. 



Closed frequent itemsets
• An itemset Y is closed if none of its immediate supersets has the same 

support count as Y.

– Put another way, an itemset X is not closed if at least one of its 
immediate supersets has the same support count as X.

• An itemset is a closed frequent itemset if it is closed and its support is 
greater than or equal to minsup count.

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2



Maximal vs. Closed Itemsets
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

# Closed = 9

# Maximal = 4

Closed and 
maximal

Closed but 
not maximal



Maximal vs Closed Itemsets

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets

All maximal frequent itemsets 
are closed because none 
of the maximal frequent itemsets 
can have the same support count 
as their 
immediate supersets.



Deriving Frequent Itemsets From 
Closed Frequent Itemsets

• Consider {a, d}.

– It is frequent because {a, b, d} is.

– Since it isn't closed, its support count must be identical to one of its immediate 

supersets.

– The key is to determine which superset among {a, b, d}, {a, c, d}, or {a, d, e} has 

exactly the same support count as {a, d}.

• The Apriori principle states that: 

– Any transaction that contains the superset of {a, d} must also contain {a, d}.

– However, any transaction that contains {a, d} does not have to contain the 

supersets of {a, d}.

– So, the support for {a, d} must be equal to the largest support among its 

supersets.

– Since {a, c, d} has a larger support than both {a, b, d} and {a, d, e}, the support 

for {a, d} must be identical to the support for {a, c, d}.



Example

C  = {ABC:3, ACD:4, CE:6, DE:7}       

kmax=3

F3 = {ABC:3, ACD:4}

F2 = {AB:3, AC:4, BC:3, AD:4, CD:4, CE:6, DE:7}

F1 = {A:4, B:3, C:6, D:7, E:7}



Computing Frequent Closed Itemsets

During the Apriori Algorithm: 

• After computing, say Fk and Fk+1, check whether there is some 
itemset in Fk which has a support equal to the support of one 
of its supersets in Fk+1. Purge all such itemsets from Fk.  


