
Generating frequent itemsets

Lecture 13

Mining Association Rules
• Two-step approach:

1. Frequent Itemset Generation

– Generate all itemsets whose support minsup (these
itemsets are called frequent itemset)

2. Rule Generation

– Generate high confidence rules from each frequent
itemset, where each rule is a binary partitioning of a
frequent itemset (these rules are called strong rules)

We focus first on frequent itemset generation.

Candidates for frequent itemsets
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are
2d possible candidate
itemsets

Frequent Itemset Generation:
brute force

• Each itemset in the lattice is a candidate frequent itemset
• Count the support of each candidate by scanning the database
• Match each transaction against every candidate
• Complexity ~ O(NMw) => Expensive since M = 2d !!!

– w is max transaction width.

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions List of

Candidates

M

w

Frequent itemset generation:
Apriori algorithm

• The name Apriori is based on the fact that we use
prior knowledge about k-itemsets in order to
prune candidate k+1-itemsets

• The idea: level-wise processing
– find frequent 1-itemsets: F1

– F1 is used to find F2

– Fk is used to find Fk+1

• The efficiency is based on anti-monotone
property of support: if a set cannot pass the test,
all its supersets will fail the same test

Apriori principle

• All subsets of a frequent itemset A must also
be frequent

• If itemset A appears in less than minsup
fraction of transactions, then itemset A with
one more item added cannot occur more
frequently than A. Therefore, if A is not
frequent, all its supersets are not frequent as
well

Found to be
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned
supersets

Illustrating Apriori Principle
Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Items (1-itemsets)

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)Minimum support

count = 3

If every subset is considered,
6C1 + 6C2 + 6C3 = 41

With support-based pruning,
6 + 6 + 1 = 13

Itemset Count

{Bread,Milk,Diaper} 3

Triplets (3-itemsets)

With the Apriori principle we need to keep
only this triplet, because it’s the only one
whose subsets are all frequent.

Apriori Algorithm
• Let k=1

• Generate set F1 of frequent 1-itemsets

• Repeat until Fk is empty

• k=k+1

• Generate length-k candidate itemsets Ck from length-k-1
frequent itemsets Fk-1

• Prune candidate itemsets containing subsets of length-k-
1 that are infrequent

• Count the support of each candidate in Ck by scanning
the DB and eliminate candidates that are infrequent,
leaving only those that are frequent - Fk

Candidate generation and prunning

Many ways to generate candidate itemsets.
An effective candidate generation procedure:

1. Should avoid generating too many unnecessary candidates.
– A candidate itemset is unnecessary if at least one of its subsets is

infrequent.

2. Must ensure that the candidate set is complete,
– i.e., no frequent itemsets are left out by the candidate

generation procedure.

3. Should not generate the same candidate itemset more than
once.
– E.g., the candidate itemset {a, b, c, d} can be generated in many

ways---
• by merging {a, b, c} with {d},
• {c} with {a, b, d}, etc.

Generating Ck+1 from Fk: brute force
• A bruteforce method considers every frequent k-itemset

as a potential candidate and then applies the candidate
pruning step to remove any unnecessary candidates.

Fk-1F1 Method
• Extend each frequent (k - 1)itemset with a

frequent 1-itemset.

• Is it complete?
The procedure is complete because every frequent k--
itemset is composed of a frequent (k - 1)itemset and a
frequent 1-itemset.

• However, it doesn’t prevent the same
candidate itemset from being generated
more than once.

E.g., {Bread, Diapers, Milk} can be generated by
merging

• {Bread, Diapers} with {Milk},

• {Bread, Milk} with {Diapers}, or

• {Diapers, Milk} with {Bread}.

Lexicographic Order

• Avoid generating duplicate candidates by ensuring that the items
in each frequent itemset are kept sorted in their lexicographic
order.

• Each frequent (k-1)-itemset X is then extended with frequent
items that are lexicographically larger than the items in X.

• For example, the itemset {Bread, Diapers} can be augmented with
{Milk} since Milk is lexicographically larger than Bread and
Diapers.

• However, we don’t augment {Diapers, Milk} with {Bread} nor
{Bread, Milk} with {Diapers} because they violate the
lexicographic ordering condition.

• Is it complete?

Lexicographic Order - Completeness
• Is it complete?

Let (i1,…, ik-1, ik) be a frequent k-itemset sorted in lexicographic
order.

Since it is frequent, by the Apriori principle, (i1,…, ik-1) and (ik) are
frequent as well.

(i1,…, ik-1) Fk-1 and (ik) F1.

Since, (ik) is lexicographically bigger than i1,…, ik-1, we have that (i1,…,
ik-1) would be joined with (ik) for giving (i1,…, ik-1, ik) as a candidate k-
itemset.

Still too many candidates…
• E.g. merging {Beer, Diapers} with {Milk} is unnecessary because

one of its subsets, {Beer, Milk}, is infrequent.

• For a candidate k-itemset to be worthy,

– every item in the candidate must be contained in at least k-1
of the frequent (k-1)-itemsets.

– {Beer, Diapers, Milk} is a viable candidate 3-itemset only if
every item in the candidate, including Beer, is contained in at
least 2 frequent 2itemsets.

Since there is only one frequent 2-itemset containing Beer,
all candidate 3-itemsets involving Beer must be infrequent.

• Why?

Because each of k-1-subsets containing an item must be frequent.

Fk-1F1

Fk-1Fk-1 Method
• Merge a pair of frequent (k-1)-itemsets only if their first k-2 items are

identical.

 E.g. frequent itemsets {Bread, Diapers} and {Bread, Milk} are merged to form
a candidate 3itemset {Bread, Diapers, Milk}.

 We don’t merge {Beer, Diapers} with {Diapers, Milk} because the first item in
both itemsets is different.

 Indeed, if {Beer, Diapers, Milk} is a viable candidate, it would have been

obtained by merging {Beer, Diapers} with {Beer, Milk} instead.

• This illustrates both the completeness of the candidate generation procedure
and the advantages of using lexicographic ordering to prevent duplicate
candidates.

Pruning?

• Because each candidate is obtained by merging a pair of frequent (k-1) -
itemsets, an additional candidate pruning step is needed to ensure that the
remaining k-2 subsets of k-1 elements are frequent.

Fk-1Fk-1

Example: Apriori candidate generation

Find all frequent itemsets from the following data.
Min support count threshold=2

TID Extra cheese Onions Peppers Mushrooms Olives Anchovy

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1 1

6 1 1 1

Pizza toppings dataset

Binary data format

2. Count 1-item frequent itemsets

TID A B C D E F

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1 1

6 1 1 1

σ 4 4 1 4 2 1

Support
count

Frequent 1-itemsets:
{A}, {B}, {D}, {E}

3. Generate candidate 2-itemsets

A B D E

A

B

D

E

Candidate 2-itemsets C2

{A,B} {A,D} {A,E}
{B,D} {B,E}
{D,E}

4. Scan DB, count candidates

TID A B C D E F

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1 1

6 1 1 1

A B D E

A 3 3 2

B 2 2

D 1

E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}
{D,E}

2 ways of candidate generation

a) Ck=Fk x F1

b) Ck=Fk-1 x Fk-1

In both cases itemsets are lexicographically
sorted: we may extend existing itemset only
with an item which is lexicographically largest
among all items in Fk-1

5a. Generate C3=F2xF1

F2\F1 A B D E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

Frequent 1-itemsets:
{A}, {B}, {D}, {E}

5a. Generate C3=F2xF1

F2\F1 A B D E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

Frequent 1-itemsets:
{A}, {B}, {D}, {E}

Candidate 3-itemsets C3

{A,B,D} {A,B,E} {A,D,E} {B,D,E}

5b. Generate C3=F2xF2

F2\F2 A,B A,D A,E B,D B,E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

The first item should be
identical in order to join

5b. Generate C3=F2xF2

F2\F2 A,B A,D A,E B,D B,E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

The first item should be
identical in order to join

Candidate 3-itemsets C3

{A,B,D} {A,B,E} {A,D,E} {B,D,E}

6a. Prune C3 before counting

F2\F1 A B D E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

Frequent 1-itemsets:
{A}, {B}, {D}, {E}

Candidate 3-itemsets C3

{A,B,D} {A,B,E} {A,D,E} {B,D,E}

6. Prune C3 before counting

F2\F1 A B D E

A,B

A,D

A,E

B,D

B,E

Frequent 2-itemsets F2

{A,B} {A,D} {A,E}
{B,D} {B,E}

Frequent 1-itemsets:
{A}, {B}, {D}, {E}

Candidate 3-itemsets C3

{A,B,D} {A,B,E} {A,D,E} {B,D,E}

7. Count candidates

F2\F1 A B D E

A,B 2 2

A,D

A,E

B,D

B,E

TID A B C D E F

1 1 1 1

2 1 1

3 1 1

4 1 1

5 1 1 1 1

6 1 1 1

Frequent 3-itemsets F3

{A,B,D} {A,B,E}

8a. Generate candidates C4=F3xF1

F3\F1 A B D E

A,B,D

A,B,E

The only candidate 4-itemset:
{A,B,D,E}
Do we need to count its support?
Can it be pruned?

Solution: all frequent k-itemsets, k>=2

• {A,B} {A,D} {A,E} {B,D} {B,E}

• {A,B,D} {A,B,E}

Apriori Algorithm. Summary

• Generate F1

• Let k=1

• Repeat until Fk is empty

• k=k+1

• Generate Ck from Fk-1

• Prune Ck containing subsets that are not in Fk-1

• Count support of each candidate in Ck by scanning DB

• Eliminate infrequent candidates, leaving Fk

Reduces the number of candidates to be counted against the
database

Counting candidates

• Generate F1

• Let k=1

• Repeat until Fk is empty

• k=k+1

• Generate Ck from Fk-1

• Prune Ck containing subsets that are not in Fk-1

• Count support of each candidate in Ck by scanning DB

• Eliminate infrequent candidates, leaving Fk

Goal: to reduce the number of comparisons by avoiding matching
each candidate against each transaction

Counting candidates: brute-force

• For each transaction: loop through all candidates and
increment count if a candidate is found in the transaction

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions List of

Candidates

M

w

Counting candidates: enumerating
items in transaction

• For a transaction of 6 items the number of possible 3-itemsets is C3,5=10. If
the number of candidates is significantly larger than transaction width, we
enumerate all possible k-itemsets in each transaction and increment
support count only for the corresponding candidates

1 2 3 5 6

Transaction, t

2 3 5 61 3 5 62

5 61 33 5 61 2 61 5 5 62 3 62 5

5 63

1 2 3

1 2 5

1 2 6

1 3 5

1 3 6
1 5 6

2 3 5

2 3 6
2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Counting candidates: enumerating
items in transaction

• All 3-itemsets must begin with 1,2, or 3. Why?

1 2 3 5 6

Transaction, t

2 3 5 61 3 5 62

5 61 33 5 61 2 61 5 5 62 3 62 5

5 63

1 2 3

1 2 5

1 2 6

1 3 5

1 3 6
1 5 6

2 3 5

2 3 6
2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Counting candidates: enumerating
items in transaction

• The number of ways to select a second item: 1 can be followed by
2,3, or 5. Why not 6?

1 2 3 5 6

Transaction, t

2 3 5 61 3 5 62

5 61 33 5 61 2 61 5 5 62 3 62 5

5 63

1 2 3

1 2 5

1 2 6

1 3 5

1 3 6
1 5 6

2 3 5

2 3 6
2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Matching enumerated itemsets to
candidates: hash tree

• At each level of Apriori algorithm, candidates are
hashed into separate buckets. The enumerated
itemsets in each transaction are also hashed using
the same hashing function. The comparison is only
within several buckets, instead of the entire
candidate set.

Matching enumerated itemsets to
candidates: hash tree

• At each level of Apriori algorithm, candidates are hashed into
separate buckets. The enumerated itemsets in each
transaction are also hashed using the same hashing function.
The comparison is only within several buckets, instead of the
entire candidate set.

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions Hash Structure

k

Buckets

Generate Hash Tree

2 3 4

5 6 7

1 4 5
1 3 6

1 2 4

4 5 7 1 2 5

4 5 8

1 5 9

3 4 5 3 5 6

3 5 7

6 8 9

3 6 7

3 6 8

1,4,7

2,5,8

3,6,9

Hash function

You need:

• A hash function (e.g. h(p)=p mod 3)

• Max leaf size: max number of itemsets stored in a leaf node (if number of
candidate itemsets exceeds max leaf size, split the node)

Suppose you have 15 candidate itemsets of length 3 and leaf size is 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3
5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

1

2

3

Generate Hash Tree

1,4,7

2,5,8

3,6,9

Hash function

Suppose you have 15 candidate itemsets of length 3 and leaf size is 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3
5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

2 3 4

5 6 7
1 4 5

1 3 6

1 2 4

4 5 7

1 2 5

4 5 8

1 5 9

3 5 6

3 5 7

6 8 9

3 4 5

3 6 7

3 6 8
Split nodes with more than 3

candidates
using the second item

Generate Hash Tree

1,4,7

2,5,8

3,6,9

Hash function

Suppose you have 15 candidate itemsets of length 3 and leaf size is 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3
5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

2 3 4

5 6 7 3 5 6

3 5 7

6 8 9

3 4 5

3 6 7

3 6 8

1 2 4

4 5 7

1 2 5

4 5 8

1 5 9

1 4 5
1 3 6

Now split nodes
using the third item

Generate Hash Tree

1,4,7

2,5,8

3,6,9

Hash function

Suppose you have 15 candidate itemsets of length 3 and leaf size is 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3
5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

2 3 4

5 6 7 3 5 6

3 5 7

6 8 9

3 4 5

3 6 7

3 6 8

1 4 5
1 3 6

1 2 4

4 5 7 1 2 5

4 5 8

1 5 9

Now, split this similarly.

Matching transaction items to the
hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1 2 3 5 6

1 + 2 3 5 6
3 5 62 +

5 63 +

1,4,7

2,5,8

3,6,9

Hash Functiontransaction

Matching transaction items to the
hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 7 out of 15
candidates

Compact Representation of Frequent
Itemsets

• Representative set of frequent itemsets, from
which all other frequent itemsets can be
derived

– Maximal frequent itemsets

– Closed frequent itemsets

Maximal Frequent Itemsets

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD

E
Border

Infrequent
Itemsets

Maximal
Itemsets

An itemset is maximal frequent if none of its immediate supersets is
frequent

Maximal frequent
itemsets form the
smallest set of
itemsets from which
all frequent itemsets
can be derived.

Maximal Frequent Itemsets
• Despite providing a compact representation, maximal

frequent itemsets do not contain the support information of
their subsets.

– For example, the support of the maximal frequent itemsets
{a, c, e}, {a, d}, and {b,c,d,e} do not provide any hint

about the support of their subsets.

• An additional pass over the data set is therefore needed to
determine the support counts of the nonmaximal frequent
itemsets.

• It might be desirable to have a minimal representation of
frequent itemsets that preserves the support information.

Closed frequent itemsets
• An itemset Y is closed if none of its immediate supersets has the same

support count as Y.

– Put another way, an itemset X is not closed if at least one of its
immediate supersets has the same support count as X.

• An itemset is a closed frequent itemset if it is closed and its support is
greater than or equal to minsup count.

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2

Maximal vs. Closed Itemsets
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

Closed = 9

Maximal = 4

Closed and
maximal

Closed but
not maximal

Maximal vs Closed Itemsets

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets

All maximal frequent itemsets
are closed because none
of the maximal frequent itemsets
can have the same support count
as their
immediate supersets.

Deriving Frequent Itemsets From
Closed Frequent Itemsets

• Consider {a, d}.

– It is frequent because {a, b, d} is.

– Since it isn't closed, its support count must be identical to one of its immediate

supersets.

– The key is to determine which superset among {a, b, d}, {a, c, d}, or {a, d, e} has

exactly the same support count as {a, d}.

• The Apriori principle states that:

– Any transaction that contains the superset of {a, d} must also contain {a, d}.

– However, any transaction that contains {a, d} does not have to contain the

supersets of {a, d}.

– So, the support for {a, d} must be equal to the largest support among its

supersets.

– Since {a, c, d} has a larger support than both {a, b, d} and {a, d, e}, the support

for {a, d} must be identical to the support for {a, c, d}.

Example

C = {ABC:3, ACD:4, CE:6, DE:7}

kmax=3

F3 = {ABC:3, ACD:4}

F2 = {AB:3, AC:4, BC:3, AD:4, CD:4, CE:6, DE:7}

F1 = {A:4, B:3, C:6, D:7, E:7}

Computing Frequent Closed Itemsets

During the Apriori Algorithm:

• After computing, say Fk and Fk+1, check whether there is some
itemset in Fk which has a support equal to the support of one
of its supersets in Fk+1. Purge all such itemsets from Fk.

