### **Cost-based evaluation**

Lecture 10

# Outline

- Performance measure: error rate
- Generating test set
- Predicting performance interval
- Comparing two classifiers
- Cost-based evaluation

# The Inadequacy of Accuracy

- As the class distribution becomes more skewed, evaluation based on accuracy breaks down.
  - Consider a dataset where the classes appear in a 999:1 ratio.
  - A simple rule, which classifies every instance as the majority class, gives a 99.9% accuracy – no further improvement is needed!
- Evaluation by classification accuracy also assumes equal error costs---that a false positive error is equivalent to a false negative error.
  - In the real world this is rarely the case, because classifications lead to actions which have consequences, sometimes grave.

### **Cost-based evaluation**

- In practice, different types of classification errors often incur different costs
- The rare class is often denoted as positive
- The confusion matrix:

|              |     | Predict        | <b>Predicted class</b> |  |  |
|--------------|-----|----------------|------------------------|--|--|
|              |     | Yes            | No                     |  |  |
| Actual class | Yes | True positive  | False negative         |  |  |
|              | No  | False positive | True negative          |  |  |

# Terminology

• The *confusion matrix*:

|              |     | Predict        | Predicted class |  |  |
|--------------|-----|----------------|-----------------|--|--|
|              |     | Yes            | No              |  |  |
| Actual class | Yes | True positive  | False negative  |  |  |
|              | No  | False positive | True negative   |  |  |

True positives (TP) – the number of positive examples correctly predicted as positives False negatives (FN) – the number of positive examples wrongly predicted as negatives False positives (FP) – the number of negative examples wrongly predicted as positives True negatives (TN) – the number of negative examples correctly predicted as negatives

# Terminolgy. Fractions

- Suppose you want to know what are all positive instances in your dataset (red dots)
- The classifier outputs as positives the instances inside the oval



### Terminology. TPF, sensitivity or recall

- Suppose you want to find all positive instances in your dataset (red dots)
- The classifier outputs as positives the instances inside the oval
- True positive rate (fraction): TPF=TP/all positives
- In the example: 4 red dots out of 10 red dots – TPF=0.4
- Also called: sensitivity or recall
- High sensitivity or high recall mean that classifier found most of the relevant positive instances



Examples:

high-sensitive HIV test- if the person is sick, it will be diagnosed with highprobability

High-recall document query: the query brought most of the relevant documents

# Terminology. Precision

- Suppose you want to find all positive instances in your dataset (red dots)
- The classifier outputs as positives the instances inside the oval
- Precision (fraction): precision=TP/(TP+FP)
- In the example: 4 red dots out of 7 total dots which are all identified as positive

Precision=4/7

 High precision means that classifier returned more relevant results than irrelevant



Highly precise HIV test – whoever is classified as HIVpositive is most probably sick

### Terminology. False Positive Fraction

- Suppose you want to find all positive instances in your dataset (red dots)
- The classifier outputs as positives the instances inside the oval
- False Positive Rate(fraction): FPF=FP/(all negatives)
- In the example: 3 black dots out of 10 total dots which represent all negative instances

FPF=3/10

 High FPF means that classifier is not very specific – it brings a lot of irrelevant results



Example: mammography

If the person is diagnosed, it is not very likely to be really sick

# Terminology. Specificity

- Suppose you want to find all positive instances in your dataset (red dots)
- The classifier outputs as positives the instances inside the oval
- Specificity (fraction): specificity=TN/(all negatives)
- In the example: 7 black dots which are left outside of the positive prediction out of total 10 negative instances

Specificity=7/10

 High specificity means that if classifier identifies something as positive, it is a high probability that it is indeed positive

Specificity + FPF=1.00



Highly-specific test means that it is very low probability to be classified as positive, if the person is indeed negative

# Counting the cost. Example

|        |         | Predicted class |     |  |  |
|--------|---------|-----------------|-----|--|--|
|        |         | Class + Class - |     |  |  |
| Actual | Class + | -1              | 100 |  |  |
| class  | Class - | 1               | 0   |  |  |

For example, HIV diagnostic test

#### Cost matrix

 A cost matrix encodes the penalty of classifying records of one class as another. A negative value represents an award for making a correct classification

# Counting the cost. Example

|        |               | Predicted class |     |  |  |
|--------|---------------|-----------------|-----|--|--|
|        | Class + Class |                 |     |  |  |
| Actual | Class +       | -1              | 100 |  |  |
| class  | Class -       | 1               | 0   |  |  |

#### Cost matrix

|        |         | Predicted class |         |        |         | Predicte | d class |
|--------|---------|-----------------|---------|--------|---------|----------|---------|
|        |         | Class +         | Class - |        |         | Class +  | Class - |
| Actual | Class + | 150             | 40      | Actual | Class + | 250      | 45      |
| class  | Class - | 60              | 250     | class  | Class - | 5        | 200     |

Confusion matrix for Classifier A Confusion matrix for Classifier B

The total cost of model A=150\*(-1)+60\*1+40\*100=3910 The total cost of model B=250\*(-1)+5\*1+45\*100=4255

# Counting the cost. Example

|                 |               | Predicted class |         |  |  |
|-----------------|---------------|-----------------|---------|--|--|
|                 | Class + Class |                 | Class - |  |  |
| Actual<br>class | Class +       | -1              | 100     |  |  |
|                 | Class -       | 1               | 0       |  |  |

#### Cost matrix

|              |         | Predicted class |         |        |         | Predicte | d class |
|--------------|---------|-----------------|---------|--------|---------|----------|---------|
|              |         | Class +         | Class - |        |         | Class +  | Class - |
| Actual       | Class + | 150             | 40      | Actual | Class + | 250      | 45      |
| class        | Class - | 60              | 250     | class  | Class - | 5        | 200     |
| Classifier A |         |                 |         | Class  | ifier B |          |         |

The total cost of model A=150\*(-1)+60\*1+40\*100=3910 The total cost of model B=250\*(-1)+5\*1+45\*100=4255

• HIV diagnostic test



• Promotional mailing



• Loan decisions



• Fault diagnosis



### **Cost-based classification**

- Let {p,n} be the positive and negative instance classes.
- Let {Y,N} be the classifications produced by a classifier.
- Let c(Y,n) be the cost of a false positive error.
- Let c(N,p) be the cost of a false negative error.
- For an instance *E*,
  - the classifier computes  $p(\mathbf{p} | E)$  and  $p(\mathbf{n} | E) = 1 p(\mathbf{p} | E)$  and
  - the decision to emit a positive classification is

[1-p(p|E)]\*c(Y,n) < p(p|E) \* c(N,p)