
Relational-algebra exercises 

Appendix to Lecture 3 



Running example: Movies database 

Movie ( title, year, length, inColor, studioName, producerC) 

MovieStar (name, address, gender, birthdate) 

StarsIn (movieTitle, movieYear, starName) 

MovieExec (name, address, cert, netWorth) 

Studio (studioname, presc); 

 

 

 

 



SIMPLE QUERIES 
Movies 



Selections: Movies 

1. Find titles of all black-and-white movies which were 
produced after 1970 

 

2. Find titles of all movies produced by MGM studio 
after 1970 or with length less than 1.5 hours 

 

3. Find producer of ‘Star wars’ 

 

 



Projections: Movies 

4. Info about all Disney movies produced in year 1990 

 

5. Title and length of all Disney movies produced in year 
1990 

 

6. Title and length in hours of all Disney movies produced 
in year 1990 

 



Joins: Movies 

7. For each movie’s title produce the name of this 
movie’s producer 

 

8. Find the names of producers of movies where 
Harrison Ford starred.  

 



Movie ( title, year, length, inColor, studioName, producerC) 

MovieStar (name, address, gender, birthdate) 

StarsIn (movieTitle, movieYear, starName) 

MovieExec (name, address, cert, netWorth) 

Studio (studioname, presc); 

 

9. Find all name pairs in form (movie star, movie producer) 
that live at the same address.  

Star=ρstar,staraddress (πname, address (MovieStar)) 

Prod=ρprod, prodaddress (πname, address (MovieExec)) 

 

πstar,prod((Star)⋈staraddress=prodaddress AND star !=prod(Prod)) 

 

 



MORE COMPLEX QUERIES 
Movies 



Movie ( title, year, length, inColor, studioName, producerC) 

MovieStar (name, address, gender, birthdate) 

StarsIn (movieTitle, movieYear, starName) 

MovieExec (name, address, cert, netWorth) 

Studio (studioname, presc); 

 

10. Find the names of all producers who did NOT produce ‘Star wars’ 

 

 Simple: 

πname(MovieExec) –  

πname((Movie)⋈title=‘Star wars’ AND producerC=cert(MovieExec)) 

 

 More efficient (smaller Cartesian product) 

πname((σtitle=‘Star wars’(Movie))⋈producerC!=cert(MovieExec)) 

 

 

 



**9B. Find all name pairs in form (movie star, movie producer) 
that live at the same address. Now, try to eliminate palindrome 
pairs: leave (a,b) but not both (a,b) and (b,a). 

1.    Star=ρname→star(MovieStar) 

       Prod=ρname→prod(MovieExec) 

 

2.    Pairs = πstar,prod((Star)⋈Star.address=Prod.address AND 

star!=prod(Prod)) 

 

3.    PA = σstar<prod(Pairs)  // Pairs in Ascending order 

        PD = σstar>prod(Pairs) //Pairs in Descending order 

 

4.    Palindrome = (PA)⋈PA.star=PD.prod AND PA.prod=PD.star (PD) 

5.    Pairs – πPD.star,PD.prod (Palindrome) 

 

 

Example on 
the next page 



Star 

star addr 

A 1 

B 1 

C 2 

F 3 

Prod 

prod addr 

A 1 

B 1 

D 2 

E 3 

1 
Star=ρname→star(MovieStar) 
Prod=ρname→prod(MovieExec) 

1. Renaming 



2. Cartesian 
product:  

Star x Prod 

Star Addr Prod Addr 

A 1 A 1 

A 1 B 1 

A 1 D 2 

A 1 E 3 

B 1 A 1 

B 1 B 1 

B 1 D 2 

B 1 E 3 

C 2 A 1 

C 2 B 1 

C 2 D 2 

C 2 E 3 

F 3 A 1 

F 3 B 1 

F 3 D 2 

F 3 E 3 

2.    Pairs = πstar,prod  

((Star)  
     ⋈Star.address=Prod.address AND star!=prod 

(Prod)) 

Pairs 

Star Prod 

A B 

B A 

C D 

F E 



3. Sorted pairs 

Pairs 

Star Prod 

A B 

B A 

C D 

F E 

3.    PA = σstar<prod(Pairs)  // Pairs in Ascending  
        PD = σstar>prod(Pairs) //Pairs in Descending 

PA 

Star Prod 

A B 

C D 

PD 

Star Prod 

B A 

F E 



4. Cartesian product PA x PD 
Palyndrome (only colored tuple qualify) 

PA.Star PA.Prod PD.Star PD.Prod 

A B B A 

A B F E 

C D B A 

C D F E 

4.    Palindrome = (PA) 
    ⋈PA.star=PD.prod AND PA.prod=PD.star  

                (PD) 

PA 

Star Prod  

A B 

C D 

PD 

Star Prod 

B A 

F E 

x 



5. Remove palindrome tuples from 
pairs 

5.    Pairs – πPD.star,PD.prod (Palindrome) 

Pairs 

Star Prod 

A B 

B A 

C D 

F E 
result 

Star Prod 

A B 

C D 

F E 

Palyndrome 

PA.Star PA.Prod PD.Star PD.Prod 

A B B A - 



Movie ( title, year, length, inColor, studioName, producerC) 

MovieStar (name, address, gender, birthdate) 

StarsIn (movieTitle, movieYear, starName) 

MovieExec (name, address, cert, netWorth) 

Studio (studioname, presc); 

 

11. Find names of producers that produced at least one 
movie for each of different studios: Disney and MGM 

 

πname[(σstudioName=‘Disney’(Movie))⋈producerC=cert(MovieExec)] 

∧ 
πname[(σstudioName=‘MGM’(Movie))⋈producerC=cert(MovieExec)] 

 

 

 



Movie ( title, year, length, inColor, studioName, producerC) 

MovieStar (name, address, gender, birthdate) 

StarsIn (movieTitle, movieYear, starName) 

MovieExec (name, address, cert, netWorth) 

Studio (studioname, presc); 

 

 

12. Find all movie titles for which there is no producer entry 
in MovieExec table 

πtitle(Movie) – πtitle ((Movie)⋈producerC=cert(MovieExec)) 

 

 



Movie ( title, year, length, inColor, studioName, producerC) 

MovieStar (name, address, gender, birthdate) 

StarsIn (movieTitle, movieYear, starName) 

MovieExec (name, address, cert, netWorth) 

Studio (studioname, presc); 

 

13. Find the names of all stars which starred in at least 2 
movies (according to our database) 

1.  S1=ρtitle1,year1,name1(StarsIn) 

 S2=ρtitle2,year2,name2(StarsIn) 

2. (S1) ⋈name1=name2 AND (title1 != title2 or year1!=year2)(S2)  

 

 



Lab database: Pizza 

Person ( name, age, gender )  

Frequents ( name, pizzeria )  

Eats ( name, pizza )  

Serves ( pizzeria, pizza, price )  



TEST YOURSELF ON SIMPLE 
QUERIES 

Pizza 



Projections: Pizza 

1. Find full information about all possible places 
and prices to get mushroom or pepperoni pizzas 

 

2. Find name of pizzerias that serve mushroom or 
pepperoni pizzas 

 

3. Compute the full list of pizza types, with the 
corresponding pizzerias and the price of pizza in 
cents 



Selections: Pizza 

4. Find names of all customers under 18 

5. Find names of all female customers older than 
25 

 



Join: Pizza 

6. Find all pizza types that both Amy and Dan eat 

 

7. Find the names of all females who eat a 
mushroom pizza  

 

8. Find the names of pizzerias where Hil can buy 
pizzas she eats for less than 10$ 

 

 

 



Person ( name, age, gender )  
Frequents ( name, pizzeria )  
Eats ( name, pizza )  
Serves ( pizzeria, pizza, price )  
 
 
9. Find the names of all females who eat either 
mushroom or pepperoni pizza (or both). 
 
 
 πname( 
σgender='female' AND (pizza='mushroom' OR pizza='pepperoni')(Person⋈Eats) 
 ) 
  



Person ( name, age, gender )  

Frequents ( name, pizzeria )  

Eats ( name, pizza )  

Serves ( pizzeria, pizza, price )  

 

 

10. Find the names of all females who eat both 
mushroom and pepperoni pizza. 

πname(σgender='female' AND pizza='mushroom'(Person⋈Eats))  

 ∩      

πname(σgender='female' AND pizza='pepperoni'(Person⋈Eats)) 

 

 

 



Person ( name, age, gender )  

Frequents ( name, pizzeria )  

Eats ( name, pizza )  

Serves ( pizzeria, pizza, price )  

 

 

11. Find all pizzerias that serve at least one pizza 
that Amy eats for less than $10.00. 

πpizzeria(σname='Amy'(Eats)⋈σprice<10(Serves)) 

 

 



Person ( name, age, gender )  

Frequents ( name, pizzeria )  

Eats ( name, pizza )  

Serves ( pizzeria, pizza, price )  

 

12. Find all pizzerias frequented by at least one 
person under the age of 18. 

  πpizzeria(σage<18(Person)⋈Frequents) 

  



Person ( name, age, gender )  

Frequents ( name, pizzeria )  

Eats ( name, pizza )  

Serves ( pizzeria, pizza, price )  

 

13. Find all pizza types which are not eaten by 
anyone  

πpizza(Serves)  - πpizza(Eats) 

 



Person ( name, age, gender )  

Frequents ( name, pizzeria )  

Eats ( name, pizza )  

Serves ( pizzeria, pizza, price )  

 

14. Find all pizzerias that are frequented by only 
females or only males. 

πpizzeria(σgender='female'(Person)⋈Frequents) − 

πpizzeria(σgender='male'(Person)⋈Frequents)  

⋃  

πpizzeria(σgender='male'(Person)⋈Frequents) − 

πpizzeria(σgender='female'(Person)⋈Frequents) 

 



Person ( name, age, gender )  

Frequents ( name, pizzeria )  

Eats ( name, pizza )  

Serves ( pizzeria, pizza, price )  

 

15. Find all pizzerias where Dan could buy pizzas 
that he eats, and where he has never bought a pizza 
yet 

πpizzeria[(σname=‘Dan'(Eats))⋈ (Serves) ] 

- 

π pizzeria (σname=‘Dan'(Frequents)) 

 



Person ( name, age, gender )  

Frequents ( name, pizzeria )  

Eats ( name, pizza )  

Serves ( pizzeria, pizza, price )  

 

16. For each person, find all pizzas the person 
eats that are not served by any pizzeria the 
person frequents. Return all such person (name) 
/ pizza pairs. 

Eats−πname,pizza(Frequents⋈Serves) 
 



Person ( name, age, gender )  

Frequents ( name, pizzeria )  

Eats ( name, pizza )  

Serves ( pizzeria, pizza, price )  

 

17. Find the names of all people who frequent 
only pizzerias serving at least one pizza they eat. 

 

πname(Person) 

− 

πname(Frequents − πname,pizzeria(Eats⋈Serves)) 

Explanation 
on the next 
page 



17. Find the names of all people who frequent only 
pizzerias serving at least one pizza they eat. 
 
 1. List of all pizzerias which serve at least one of pizzas 

which particular person can eat: 
πname,pizzeria(Eats⋈Serves)  
 
 2. List of all pizzerias which are frequented by this 

person but do not serve any pizza he can it 
Frequents  - πname,pizzeria(Eats⋈Serves)  
 
 3. Answer to the query 
πname(Person) 
− 
πname(Frequents − πname,pizzeria(Eats⋈Serves)) 
 



Person ( name, age, gender )  

Frequents ( name, pizzeria )  

Eats ( name, pizza )  

Serves ( pizzeria, pizza, price )  

 

18. Find the names of all people who frequent 
every pizzeria serving at least one pizza they eat. 

 

πname(Person) 

− 

πname(πname,pizzeria(Eats⋈Serves)−Frequents) 

Explanation 
on the next 
page 



18. Find the names of all people who frequent every pizzeria 
serving at least one pizza they eat. 

 1. List of all pizzerias per person which serve at least one pizza 
this person can eat: 

πname,pizzeria(Eats⋈Serves) 

 

 2. List of pizzerias which serve the desirable pizza but which 
person did not visit yet 

πname,pizzeria(Eats⋈Serves)−Frequents 

 

 3. All the people excluding those in p.2 

πname(Person) 

− 

πname(πname,pizzeria(Eats⋈Serves)−Frequents) 



Person ( name, age, gender )  
Frequents ( name, pizzeria )  
Eats ( name, pizza )  
Serves ( pizzeria, pizza, price )  
 
19. Find the pizzeria serving the cheapest pepperoni 
pizza. In the case of ties, return all of the cheapest-
pepperoni pizzerias. 
πpizzeria(σpizza='pepperoni'Serves)  
−  
π pizzeria   [σprice>price2( 
 πpizzeria,price(σpizza='pepperoni'Serves)   
× 
 ρpizzeria2,price2πpizzeria,price(σpizza='pepperoni'Serves))] 
 

Explanation 
on the next 
page 



19. Find the pizzeria serving the cheapest pepperoni pizza. In the case of ties, 
return all of the cheapest-pepperoni pizzerias.  
 
 1. Finds all pizzerias where price for pepperoni pizza is greater than in 

some other pizzeria 
σprice>price2( 
 πpizzeria,price(σpizza='pepperoni'Serves)   
× 
 ρpizzeria2,price2[πpizzeria,price(σpizza='pepperoni'Serves)] 
 ) 
 
 
 2. Subtracts it from all other pizzerias serving pepperoni pizzas 
 
πpizzeria(σpizza='pepperoni'Serves)  
−  
π pizzeria   [σprice>price2( 
 πpizzeria,price(σpizza='pepperoni'Serves)   
× 
 ρpizzeria2,price2πpizzeria,price(σpizza='pepperoni'Serves))] 
 


