Genetic Algorithms

Project for CSC 589B Course

Zahra Sasanian
V00715027

Table of Contents

T 111 oo (Ui 1o o OSSR TSP TP PPR PO 3
2. GENEUIC AIGOMTENM ...ciiiiiieiee ettt e et e ettt neeneene e 4
2.1 POPUIBLION ...ttt sttt et e et e et e s e ne e s e e st e neeneerenre e 4
2.2, SEAICH SPACE ettt eene e ne e 4
2.3, FITNESS FUNCLIONviiiieiiiesie sttt b ettt et st enesbe e ene e 4
T 1= od 1 o] SO RSPRSPSTRT 4
2.5. Crossover (RECOMBINALION)cuiiriiirieisieieesiee sttt ne e ne e 5
2.6, IMIUTALION ...ttt ettt ettt s et et e bt e bt st et e be et ene st enenbeneas 5
2.7. Termination CONGITIONocuiiiieiiieiseie ettt 5
2.8. OVEIAIl SIIUCIUIE ...ttt 6
3. Biological Example: A Genetic Algorithm for Multiple Sequence Alignment.............cccco..... 6
3.1. Introduction to Multiple Sequence AlIgNMeNnt (MSA) ... 6
3.2. ChromoSOME ENCOUINGccuiiiiriiiieiiesiesiesiesie e iesee e se st sbesbe st bestesbesbesaesaesseseeneeneeneens 7
3.3 SYSLEM PrOCESS FIOW.....eiiiiiiiiieicsiese ettt et 8
B FIENESS .ttt E e R AR R Rt bR e Rt Rt b et e Re et et et e e nentenes 8
KR O (0110 1Y TSR T TSRO RS URTURU 9
K 1Y 111 - 4 o] TP 10
3.6.1. MOVEROWSPACE OPEIALONc.eiiiiiiiiiitesieie ettt sttt sae e e e 10
3.6.2. MErgeSPace OPEIALONccuiiiiiiieiii ettt sttt b et e sbessee b e 11
3.6.3. FUIISPACEC Ol OPEIALOFcviiviiieiiesiesiesiesie ettt sttt nnenne e 12
3.6.4. MOVESPACEC O] OPEIALOLeviiviiieiteiieitesie sttt sttt st steste e e 13
RESUIES ... bbb bbbt 14
(O] 0T 1153 o] o [OOSR 14
RETEIBINCES. ...ttt ettt ettt e b e bt et b et n et e bt ne et nes 15

1. Introduction

The idea of evolutionary computing was first introduced in the 1960s by I. Rechenberg in his
work "Evolution strategies” (Evolutionsstrategie in original)®. His idea was then developed by
other researchers. Genetic Algorithms (GAs) were invented by John Holland and developed by
him and his students and colleagues [1].

Genetic algorithms (GAs) are general search and optimization algorithms inspired by processes
normally associated with the natural world (natural selection). They are search techniques used
in computing to find exact or approximate solutions to optimization and search problems. They
are particularly well suited for hard problems where little is known about the underlying search
space. Fig.1 shows the position of Genetic Algorithms among other search techniques. Genetic
Algorithms have many applications in the computer and social sciences and in engineering [2].

There are many optimization problems which have very large search space. In these problems,
usually it is impossible to use brute-force solutions or exhaustive search algorithms to find the
optimum solution in the search space. On the other hand, sometimes we need to find a near
optimal solution in a limited time; therefore, we need to use other kind of searches, one of which
is Genetic Algorithm. We don’t need to know any rule or regularity among solutions in search
space to run a Genetic Algorithm on it, that’s why this type of algorithms are very useful where
our knowledge of the underlying search space is limited.

In this project, first we discuss the basic concepts corresponding Genetic Algorithms, then we
will show an example of using a Genetic Algorithm in solving the biological multiple sequence
alignment problem.

Calculus Base Enumerative
Techniques Technii]ues
. — | 1
Fibonacei| [Sort] DFs || Dynamic |IBFs
Programming
i | |
Tabu Search Hill Simulated

Climbing| JAnnealing

| |
Genetic
Programming

Fig.1l. Classification of search techniques and position of GAs among them.

! http://en.wikipedia.org/wiki/Evolution_strategy

http://en.wikipedia.org/wiki/Evolution_strategy�

2. Genetic Algorithm

Genetic Algorithm works similar to what happens in nature as species evolve by natural
selection. It starts with a set of solutions (represented by chromosomes) called population. Some
solutions from one population are taken and used to form a new population. This is motivated by
a hope, that the new population will be better than the old one. Solutions which are selected to
form new solutions (offspring) are selected according to their fitness - the more suitable they are
the more chance they have to reproduce. This process is repeated until some condition (for
example number of populations or improvement of the best solution) is satisfied. Below we
describe the parameters of the Genetic Algorithm more specifically.

2.1. Population

Each population consists of a set of individuals (chromosomes). Each chromosome is a solution
to the problem which is being solved by Genetic Algorithm. Therefore, the first step to solve a
problem using Genetic Algorithms is to encode its solutions to a structure similar to
chromosome. Chromosomes can be strings, permutations, sets or any other data structure.

2.2. Search Space

In a numerical search or optimization problem, possible solutions are being searched in order to
locate the solution that best describes the problem. The set (or list) of all possible solutions to the
problem which are searched is called search space. In such a space, some measure of distance
between solutions can be defined and each solution can be assigned a measure of success, or
fitness within the problem. Better performing or fitter solutions will then occupy the peaks
within the search space.

2.3. Fitness Function

In order to evaluate the solutions, we need some measure of optimality which is called Fitness
Function. A fitness function is a particular type of objective function that prescribes the
optimality of a solution (that is, a chromosome) in a genetic algorithm so that, that particular
chromosome may be ranked against all other chromosomes. At each evolutionary step, new
chromosomes are produced by fitter solutions (solutions which have higher fitness value) from
the previous generation, which have more chance to survive during the evolution.

2.4. Selection

The purpose of the selection is to focus the search in promising regions of the search space. It is
inspired by Darwin’s theorem, “survival of the fittest”. During each successive generation, a
proportion of the existing population is selected to breed a new generation. Individual solutions
are selected through a fitness-based process, where fitter solutions (as measured by a fitness
function) are typically more likely to be selected. Certain selection methods rate the fitness of
every solution and select the best solutions. Other methods rate only a random sample of the
population, as this process may be very time consuming.

Selection can be performed from the previous population or from the individuals in the search
space which are not in the previous population. The former is called exploitation while the latter
is called exploration. There is a trade-off between exploration and exploitation. Genetic
algorithms usually consider probabilities for each of these possibilities. Too much stress on
exploration results in a pure random search whereas too much exploitation results in a pure local
search. Clearly, intelligent search methods must reside somewhere in the continuous spectrum in
between these extremes.

2.5. Crossover (Recombination)

For each new solution to be produced, a pair of parent solutions is selected for breeding using the
selection operation described above. By recombining the sub-solutions of parents, a new solution
is created which typically shares many of the characteristics of its parents. New parents are
selected for each new child, and the process continues until a new population of solutions of
appropriate size is generated. Although reproduction methods that are based on the use of two
parents are more "biology inspired”, some research suggests more than two parents are better to
be used to reproduce a good quality chromosome.

This process ultimately results in building the next generation of chromosomes that is different
from the initial generation. Generally the average fitness values of the population are increased
during this procedure, since only the best organisms from the last generation are selected for
breeding along with a small proportion of less fit solutions for avoiding local minimums. There
are different types of crossovers such as: “one point” crossover, “two points” crossover, “cut and
splice” crossover, etc.

2.6. Mutation

This operation simulates the mutation which occurs in biological selection. The purpose of
mutation is to simulate the effect of errors that happen with low probability during duplication,
and to preserve and introduce diversity. It results in moving to new areas in the search space or
restoring lost information to the population.

The classic example of a mutation operator involves a probability that an arbitrary bit in a
genetic sequence will be changed from its original state. A common method of implementing the
mutation operator involves generating a random variable for each bit in a sequence. This random
variable tells whether or not a particular bit will be modified. This mutation procedure is called
single point mutation. Other types of mutation are inversion and floating point mutation. When
the gene encoding is restrictive as in permutation problems, mutations are swaps, inversions and
scrambles.

2.7. Termination Condition

Creating new generations continues until a termination condition is satisfied. This condition can
be a pre-determined number of generations or amount of elapsed time. It also can be achieving a
satisfactory solution, or having no improvement in solutions quality over a pre-determined
number of generations.

2.8. Overall Structure

Fig.2 shows the general structure of a Genetic Algorithm. At first step, the initial population is
generated from the solutions in the search space. Then the fitness or optimality of each individual
is evaluated by a fitness function and a fitness value is assigned to each individual of the initial
population.

In evolutionary loop, while the termination condition is not satisfied, the following steps are
performed. First using the selection mechanism, a set of fitter individuals is selected for
reproduction. These set maybe selected from the previous population or the search space. Then
recombination (crossover) is applied to the selected set and new offspring are created. Then with
a low probability the mutation operation is applied on each new offspring. After that, the fitness
values of the new individuals are evaluated and assigned to them. The next population is built
using new offspring and old population. It is common to select the upper 50% part of the sorted
population using fitness values containing both new individuals as well as old ones. The
evolution continues until the termination condition is met.

produce an initial population of individuals

evaluate the fitness of all individuals

while termination condition not met do
select fitter individuals for reproduction
recombine between individuals
mutate individuals
evaluate the fitness of the modified individuals
generate a new population

End while
Fig.2. Genetic Algorithm

3. Biological Example: A Genetic Algorithm for Multiple Sequence
Alignment

As an example of genetic algorithms, we use an algorithm introduced by Jorng-Tzong et. al. [3]
which solves the multiple sequence alignment problem in biology using genetic algorithms.

3.1. Introduction to Multiple Sequence Alignment (MSA)

Multiple sequence alignment is an important analytical process which helps biologists to
discover patterns among the chromosomes of different species. There are different types of

6

biological sequences. The DNA sequence is composed of four kinds of elements called bases,
denoted as A, T, C, and G. Protein sequence has 20 alphabets C, S, T, P, A, G, N, D, E, Q, H, R,
K, M, I, L, V, F Y, W. Multiple sequence alignment can help compare the structureal
relationship between sequences by simultaneously aligning multiple sequences to construct
connections between the elements in different sequences.

While many algorithms have been proposed for solving the multiple sequence alignment
problem, there is still a need to find better solutions since the problem is NP-Complete. Dynamic
programming can be useful to solve the MSA problem for short length sequences but for long
sequences it is not the best solution since it consumes system resources. This paper introduces a
genetic algorithm for solving MSA problem. For simplicity and without loss of generality, we
avoid some mathematical representations in paper and try to describe them verbally or by
showing examples.

3.2. Chromosome Encoding

A chromosome is defined as a set of strings of numbers (say number-string) with fixed lengths
that represent aligned sequences, including gaps. Each number in a number-string is unique and
corresponds to a position of a certain character in a sequence. A chromosome X of an alignment
whose length is N is composed of sequences Xi, Xz, ..., Xk denoted as Xi# Xo#..# Xy can be
represented by:

XI#XZ# #XK = (xl'l,xllz, ,xl'ml)(lel,xZ'z, ,xZ'mZ) (xkll,xk'z, . xk'mk)

where (xi,l'xi,ZJ ...,xl-,mi) Is a number-string represented for the i-th sequence in an alignment.
The symbol # is represented for concatenation, and x;; is a number indicating the position of a
nucleotide at the i-th row and j-th column (x;; < x;;,1). mi is the length of the i-th number-

string. The N value limits the longest length of alignments that chromosomes can represent. It is
important to select the N value considering the size of search space. If the N value is too small,
optimal alignments of less similar sequences cannot be found. If the N value is too large, it needs
more time to find the optimal alignment of highly similar sequences. In this paper, N is
determined by the equation N = n,,,, X (1 + 173,) in which rg, is space ratio and n,,,, is the

maximum length of the sequences. As an example, consider the alignment of Fig.3. In this figure
Nmax = 10 and rsp is set to 0.2. The chromosome that corresponds to this alignment is:

(0,11) (0, 3,5, 8, 11) (1, 8, 10,11) (6, 8, 11)

-ATCCGCTTAC
-CT-C-CT-AG
A-TCCGCT-A-
TCTCCG-T-AC
Fig.3. Sequence Alignment

3.3 System Process Flow

For solving the MSA problem for DNA sequences, the procedure of Algorithml is applied. In
Algorithm 1, the symbol |P| represents the size of the population. The concept of the system
process flow is based on the architecture of the genetic algorithms described in section 2.8.
The first population is generated randomly. The numbers in the i-th number-string of the
chromosome X are generated by randomly picking m; unique numbers (m; < N) and then sorting
these numbers increasingly. The method of (Goldberg 1989) is used to select the chromosomes
of the next population from the set of offspring and the original chromosomes. The evolution is
repeated until the following termination conditions are satisfied.

0 The number of generations exceeds the maximum denoted as Qmax-

0 The best fitness is not improved over a certain number of generations denoted as bma.

Algorithm 1 The Flow of Our Approach
generate the initial population P
let n be multiplied population size by
crossover rate
while not satisfy the termination condition do
fori=1tondo
select two chromosomes x and y
from population at random
let X’ =Xand Y/ = Y
mutation (X')
mutation (Y7)
crossover (X, Y')
add (X') and (Y’) into mating pool
end for
select the best top |p/chromosomes to replace
the original population
end while

Fig.4. Genetic Algorithm for MSA

3.4 Fitness

The sum-of-pairs function (Setubal and Meidanis 1997) is used to evaluate the fitness of the
generated chromosomes. When computing the fitness, a chromosome must be converted to the
alignment form. The sum-of-pairs score is defined as the sum of pair wise scores of all pairs of
sequences. Three kinds of scores (match, mismatch, and gap) are defined for DNA sequences.

3.5 Crossover

In the crossover process, two parent chromosomes, denoted as X and Y are randomly selected in
order to produce two offspring chromosomes. Crossover points (cutting points) are randomly
selected in parent chromosomes. The blocks among the cutting points are called crossover
blocks. The crossover blocks are selected randomly. The definition of the crossover blocks is
given below. Let the parent chromosomes X and Y be represented by:

XI#XZ# #XK = (xl'l,xllz, ,xl'ml)(lel,xZ'z, ,xZ'mz) (xkll,xk'z, . xk'mk)
and

Vi#Y# . #Yy, = (}’1,1:3’1,2: ---’3’1,m1)(3’2,1:3’2,2: ---'yZ,mz) (Yk,1:3’k,2’ ---:}’k,mk)

respectively.
(Elal-, Xig, <P <X and y; o, <p < yl-'am)

|(LAi+1 \I
Ifvi=1 k{ and } ,

I I

k(abl’ xi,bi < p < xi,bi+1 a’nd yi,bi < p < yi,bi+1)J

the (x1'a1+1, ,xllbl) (xk,ak+1' ey xk'bk) and (y1'a1+1, ""yl,b1) (yk,ak+1l "'!yk,bk) are
defined as crossover blocks 4, , and B, , for X and Y respectively.

An example of the functionality of the crossover algorithm is depicted in Fig.5. In this example,
the parent chromosome X has two crossover blocks 4y 1, and Ay, 57, and the parent chromosome
Y has two crossover blocks By 1, and By, ,,. SO, the parent chromosomes are broken to their
crossover blocks and the recombination process merges their blocks resulting creation of two
new chromosomes Ag12,B1222, and Bg1,, Ai1z22. The fitness value (SP-Score) of the
Ap 12B12,22 chromosome is better than the fitness value of By 15, 41, 22. SO, it is the best child
among two children.

X=(1,4,5,7,8,9,10,15,16,18) (0,3,6,7,10,14,16,17,
20) (3,6,8,10,16,20,21)
Y=(2,4,5,6,8,9,11,14,17,20) (3,5,6,8,11,13,15,17,
20) (3,7,9,11,15,17,18)

A ,=(1,4,5,7,8,9,10)(0,3,6,7,10) (3,6,8,10)
B,,=(2,4,5,6,8,9,11) (3,5,6,8,11) (3,7,9,11)
A..=(15,16,18) (14,16,17,20) (16,20,21)

B, ,=(14,17,20) (13,15,17,20) (15,17,18)

best child = (1,4,5,7,8,9,10,14,17,20)
(0,3,6,7,10,13,15,17,20) (3,6,8,10,15,17,18)
random child = (2,4,5,6,8,9,11,15,16,18)
(3,5,6,8,11,14,16,17,20) (3,7,9,11,16,20,21)

Fig.5. Crossover example

9

3.6. Mutation

Algorithm 2 shows the mutation process. Four kinds of mutation operators are defined in this
paper, namely, MergeSpace, MoveSpaceCol, FullSpaceCol and MoveRowSpace. During the
mutation process, each chromosome is mutated n times by several operators randomly selected
from the four mutation operators. The frequency of applying each mutation operator is controlled
by its probability.

Algorithm 2 Mutation (a chromosome X)

n = (the longest length of the number-string)/
1000#x4p

for i=1to ndo
randomly select one operator from four
mutation operators to alter the chromosomes

end for
Fig.6. Mutation Algorithm

The value n is in proportional to the longest length of number-strings in chromosomes. The
purpose of the MergeSpace operator is to merge two or three gaps together. The MoveSpaceCol
operator is aimed to move gaps in given columns to the neighborhood columns. The
FullSpaceCol operator changes a space column to a full space column. In this paper, by full
space column they mean a full column without any spaces! The MoveRowSpace operator
rearranges the gaps of some sequences within given continuous columns. Below, the four
mutation operators are discussed in details.

3.6.1. MoveRowSpace Operator

The MoveRowSpace operator rearranges positions of spaces the columns of some sequences.
This operator is based on the basic two-sequence alignment using dynamic programming with
some modification in the dynamic programming table. Algorithm 3 shows this operator.

Algorithm 3 MoveRowSpace (a chromosome X)
Randomly pick some columns which begin with ¢y
and end with Cy

s.t. J a space column C € (C1,Cq)

is not a full space column

Find the sub-number-string (x; .;, X; 42,5 Xi ai)
in each number-string of X s.t.cy = X;j a1 = Cq
Make the template sequences s

According to the templatte sequence s,
recomputed the numbers in the

sub-number-strings selected at random

Fig.6. Mutation operatorl: MoveRowSpace

10

An example of applying the above operator is given in Fig.7. Fig.7a shows an input chromosome
X. First, the columns from 20 to 49 are selected randomly. Fig.7b shows the corresponding sub-
alignment of the selected part of chromosome X which begins at 20 and ends at column 49. A
template sequence is made in which symbols have the highest frequency rate in each column of
the sub-alignment. Then, a target sequence is produced by deleting the spaces from a sequence
randomly selected in the sub-alignment. In Fig.7c, t is the target sequence produced from the first
sequence in the sub-alignment and s is the template sequence.

Next, the target and the template sequences are aligned using a dynamic programming algorithm
under the condition that no new space is allowed to be inserted into the template sequence. After
the aligning process, new spaces in the target sequence are produced (see Fig.7d). Finally, the
number-string of the generated subsequence is replaced in the number-string of the chromosome
X.

(a)
(..23,25,33,38,39,40,41,44..) (.33..) (..23,25,26,33..)
(..22,23,25,26,33..) (..23,25,33,38,39,40,41..)
(.23,25,26,33..)

(b)

GET-T-AAGTTTA-A ATT----TT-AGGEE

GGTCGCAGGTTAA-G TTTAAATTTTAGGGG

CCA-T--GGTTAA-G TTTARATTTTAGGGGE

AG--T--GGCCAT-G GTTAAGATTAARATTT

GGT-T-ARGTTTA-A ATT----TTAGGTGG

CCA-T--GGTTAA-G TTTAAATTTTAGGGG

{c)

: GGT-T--GGTTAA-GTTTARATTTTAGGGG

: GGTTAAGTTTAAATTTTAGGGGE

d)

: GGT-T--GGTTAA-GTTTAAATTTTAGGCEG

: GGT-T------ AR-CGTTTAARATTTTAGGEE

— (t m

.23,25,26,27,28,29,30,33..) (.33.) (..23,25,26,33..)
«22,23,25,26,33..) (..23,25,33,38,39,40,41..)

.23,25,26,33..)
Fig.7. Example of MoveRowSpace

s

t

(e)

(23, 25, 26, 27, 28, 29, 30, 33)
(£)

(

{

{

3.6.2. MergeSpace Operator

The MergeSpace operator merges some spaces of a sequence together and then shifts to other
columns. The details of MergeSpace operator is given in Algorithm 4.

11

Algorithm 4 MergeSpace(a chromosome X)

Pick a number-string x ,=(x, ,x, ., .,x) in X at random

Choose two or three spaces to apply this operator
if Randomly select two numbers x, and x, _, then
Select two numbers h and h+1€ x,

Replace the numbers x, and X, , to h and h+1l respectively

1

X then

else if Randomly select three numbers x, .. X ... X ..

Select three numbers h, h+l and h+2 & x*1
Replace the numbers x, ., x,_,, X, .., to h, h+l and h+2 respectively

i,g+1 2

end if

Sort the numbers in x, by increasing

Fig.8. Mutation operator2: MergeSpace

In this operator, two or three spaces are selected randomly and move to other columns. An
example is given in Fig.9a. The spaces at positions 7, 9 and 10 in the third number-string are
selected to shift and merge together; therefore, the new spaces are generated at positions 13, 14
and 15.

¥=(2,4,5,6,8,9,10,14,17,20) (3,5,6,8,10,14,15,17,20) (3,7,9,10,16,17,18)
(a) ¥Y=(2,4,5,6,8,9,10,14,17,20) (3,5,6,8,10,14,15,17,20) (3,13,14,15,16,17,18)
(b) ¥Y=(2,4,5,6,8,9,10,14,17,20) (3,5,6,8,10,14,15,17,20) (3,7,9,10,14,17,18)

Fig.9. Example of MergeSpace
3.6.3. FullSpaceCol Operator

The FullSpaceCol operator is depicted in Algorithm 5 of Fig.10. This operator generates full
space columns (i.e. columns without any spaces) by grabbing and moving the neighborhood
spaces. Fig.9b shows an example of the FullSpaceCol operator. In this example, the column 14 is
selected to become a full column. The first two sequences have values on position 14 but the last
one has a space. Among the neighbors, positions 9 and 16 are not completely full and not
completely empty, so we can move one of them to 14 to fill column 14. The number 16 is
replaced by 14 since it is the nearer to 14 comparing to 9.

Algorithm 5 FullSpaceCol(a chromosome X)
Randomly pick a column 1 s.t. Csocore

* * *
(Xl_u'. X.?.'L:" L | th} { U‘:hrd
for all number-string x; = (x} ,,x; ,,...,x; .)do

if uéx] then
Find a number p from the nuber-string
:{: s.t. p is a nearest neighborhood
of u and then column p is not a full space column
Sort the number-string x* I by increase
end if

end for
Fig.10. Mutation operator3: FullSpaceCol

12

3.6.4. MoveSpaceCol Operator

The MoveSpaceCol operator moves a set of spaces in a specified range to the neighborhood
columns. The details of this mutation operator are given in Algorithm 6. First, a set of columns
A ={ay,ay, ..., a,} is selected such that satisfies the following conditions.

0 Columns which are in the range a; to a, but are not in the set A must be full space
columns.

0 The scores of all columns in A are less than a threshold, which is the score of the column
in which one third of sequences have spaces and the others have the same base symbols.

0 Number of elements in A is less than or equal to twenty.

Then, the spaces in the column set A will be moved to the neighbor columns of A. The
MoveSpaceCol operator does not destroy the full space columns of the chromosomes.

Algorithm 6 MoveSpaceColia chromsome X)

Find a column set A = {a;,as,...ap}

=

under some conditions
Choose the direction for moving the spaces in A

if the direction is left-hand side then
g=a;— 1
foru=1to?2do
for i =ptoldo

Find a column <, s.t. the number © is the
largest number and is less than or equal to g
and the column c is not a full space column
Replace all the a; in number-strings to c,
if ¢ is not exists in the corresponding
number-string

g=c-—1

end for

end for
else if the direction is right-hand side then
The process is similar to the process
of moving spaces to left-hand side
end if
Fig.11. Mutation operator4: MoveSpaceCol

13

4. Results

The number of evolutions in experiments is set to 30. Table 1 shows the experimental results for
average and best values obtained by running the genetic algorithm on a set of test data. The
‘Score’ column indicates SP-Score of alignments. The ‘M.C.” column denotes the number of
match columns. The numbers of generations and CPU time elapsed in seconds are represented in
the ‘Gen#’ and the “Time’ columns respectively. The same data is applied to the best current
alignment using ClustalW [4]. For comparison, the scoring method used in this approach is used
to evaluate the ClustalW results as well. As it is shown in the table, more than half of the results
from this algorithm are better than the ones generated by ClustalW, and the rest are close to
Clustalw.

Table 1. Results of our Genetic Algorithm in comparison with ClustalW

Average Best ClustalW
1D Score M.C. Geng Time Score M.C. Genit Time Score M.C.
D1 18627 198 475 0.633 18627 198 441 0.591 18627 198
D2 25343 449 602 0.731 25343 449 530 0621 25343 449
D3 47889 109 492 0.591 47889 109 456 0.521 47889 109
D4 79605 94 3439 7.784 82762 108 3002 6.830 81544 107
D5 33194 1610 693 3.266 33235 1614 583 2,804 33211 1612
D6 26737 2253 1653 24908 27018 2283 1982 29.793 27315 2306
D7 58004 a79 D23 21.561 50235 a02 3601 25,507 59499 904
D8 87658 1440 928 4,630 87693 1442 760 3.986 87690 1440
D9 30923 2879 3785 259,949 43971 3847 2231 146.861 51018 4414
Di1o 18812 907 843 262 18878 an9 723 1.783 18845 o905
D11 57813 999 908 2.868 57870 1001 749 2.243 57825 999
D12 36808 1124 1190 4,522 37177 1136 1601 6.69 37078 1122
D13 51756 1115 2336 15.257 53016 1164 1928 12,968 53796 1193
D14 14602 676 2910 7.397 17094 828 39014 9.794 17496 a55
D15 79439 2638 736 10.672 79473 2642 733 10.706 79371 2638
D16 143906 2167 3096 89.256 150480 2318 2527 72784 151308 2352
D17 514741 5939 5585 1208.683 529892 6229 6025 1302.874 534044 6315

5. Conclusion

In this project, we introduced Genetic Algorithms as one of the possible solutions to solve
optimization problems and discussed their applications and importance. Then, the general
structure and parameters of genetic algorithms were explained. As an example, we described a
genetic algorithm which is introduced to solve the Multiple Sequence Alignment (MSA) problem
in biology. The results show improvement over the best available solution.

14

6. References

(1]
(2]

(3]

(4]

John H. Holland, "Adaption in Natural and Artificial Systems," MIT Press, 1975.

David A. Coley, “An Introduction to Genetic Algorithms for Scientists and Engineers,” World
Scientific Publishing, 1999.

Jorng-Tzong Horng, Li-Cheng Wu, Ching-Mei Lin, and Bing-He Yang, “A genetic algorithm for
multiple sequence alignment,” Soft Computing Journal, 2005.
(http://rsdb.csie.ncu.edu.tw/tools/msa.htm)

Thompson J, Higgins D and Gibson T, “CLUSTAL W: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position specific gap penalties and weight matrix
choice,” Nuc Acids Res, 1994.

15

http://rsdb.csie.ncu.edu.tw/tools/msa.htm�

	Introduction
	Genetic Algorithm
	2.1. Population
	2.2. Search Space
	2.3. Fitness Function
	2.4. Selection
	2.5. Crossover (Recombination)
	2.6. Mutation
	2.7. Termination Condition
	2.8. Overall Structure

	Biological Example: A Genetic Algorithm for Multiple Sequence Alignment
	3.1. Introduction to Multiple Sequence Alignment (MSA)
	3.2. Chromosome Encoding
	3.3 System Process Flow
	3.4 Fitness
	3.5 Crossover
	3.6. Mutation
	3.6.1. MoveRowSpace Operator
	3.6.2. MergeSpace Operator
	3.6.3. FullSpaceCol Operator
	3.6.4. MoveSpaceCol Operator

	Results
	Conclusion
	References

