
CSC 428 (Spring 2010)
Final Project

Exact-Set Matching with the
Aho-Corasick Automaton

Tom Spreen∗

Andre Van Slyke†

April 12, 2010

∗University of Victoria
†University of Victoria

1

1. Introduction

The problem of exact-set matching (that is, searching some arbitrary text T
for one or more members of some set P of patterns p1, p2, p3, . . . pn) is well
known, and a variety of different solutions now exist. This paper will explore
one such solution, the Aho-Corasick automaton1, in detail. This automa-
ton is significant for its linear-time performance and its simplicity relative to
other exact-set matching methods.

We will first examine the history of this automaton, including motivation
for its invention. We will then examine the underlying algorithm in detail,
including pre-construction of the automaton and the path of the automaton
through an arbitrary text. Next, we will look at its running time and verify
the claim that the automaton runs in linear time. Finally, we will briefly
compare the Aho-Corasick automaton with other methods of accomplishing
similar tasks, and draw some conclusions about its efficacy as a tool for exact-
set matching, especially as compared to other methods available.

Note: we will variously refer to the Aho-Corasick automaton as the AC
automaton or simply the ACA.

1Aho, Alfred V. and Corasick, Margaret J. Efficient String Matching: An Aid to Bib-
liographic Search. Communications of the ACM, June 1975, Volume 18, Number 6, pp
333-340.

2

2. Definitions and Conventions

It is useful to predefine some commonly used terms, most of which should be
familiar to the reader.

text: a set of characters, typically large, which is the target of the search
(for example, a book or a sample of DNA)

pattern: a set of characters, typically much smaller than the associated text,
that we are looking for in the text. For example, the word “bioinformatics”.

dictionary: a set of patterns.

exact-string matching , or exact-pattern matching: the problem of finding an
exact instance of a pattern within a text (for example, finding “dog” within
“antidogmaticism”.

exact-set matching , or exact-dictionary matching: the problem of finding an
exact instance of one of many patterns in a dictionary, within a text (for
example, finding “dog” and “tido” and “tici” within “antidogmaticism”.

prefix tree, or trie: a tree defined in the mathematical sense, and constructed
from a dictionary, with the fundamental characteristics that each edge is la-
beled with a single character from some pattern in the dictionary, and that
all edge labels from any one node are distinct.

failure link: a link from the longest suffix of the current pattern that also
exists as a prefix in the keyword tree, to that prefix in the tree.

In most examples we denote a text by T (for Text), a dictionary by P (for
Patterns), and a keyword tree by K (for Keywords).

We will use set-theoretic indices; that is, numbering will start at 1, not
0. For example, the first pattern in some dictionary P will be referred to as
p1, and the first character in that pattern will be denoted by p11 .

3

3. History

Figure 1: Alfred Aho and Margaret Corasick.

AT&T Bell Laboratories (also known as Bell Labs), a research and develop-
ment centre in Murray Hill, New Jersey, has been (and continues to be) the
birthplace of many inventions in the fields of physics, engineering and, more
interestingly, computer science For instance, the UNIX operating system and
the C programming language were developed there.

It was at Bell Labs in 1975 that researchers Alfred V. Aho and Margaret
J. Corasick were searching for a fast way to perform bibliographic searches.
At the time, the widely used method of searching a given text T for a dictio-
nary P was to repeatedly use an exact-string matching solution such as the
Knuth-Morris-Pratt algorithm2(or KMP Algorithm) on T for each pi indi-
vidually in the set P . Though a simple solution, this naive approach proved
extremely slow when the cardinality of T and/or P was large.

Aho and Corasick’s breakthrough was to combine the Knuth-Morris-Pratt al-
gorithm, a clever and efficient linear-time method for exact-string matching,
with a carefully designed finite automaton, pre-constructed from a known
list of keywords. Running this automaton, with its KMP-inspired speed and

2The paper by Donald Knuth, James Morris, and Vaughan Pratt, “Fast Pattern Match-
ing in Strings”, was published by Stanford University in 1974, one year prior to Aho and
Corasick’s paper. The KMP paper gained worldwide notoriety when it was republished in
the SIAM Journal on Computing, Volume 6, Issue 2, pp. 323-350, 1977.

4

tweaked for a particular dictionary, on an arbitrary body of text produced a
very fast method for exact-set matching.

The resulting paper by Aho and Corasick, “Efficient String Matching: An
Aid to Bibliographic Search” was published in the June 1975 issue of Com-
munications of the ACM (Association for Computing Machinery, Inc.)

4. How Aho-Corasick Works

There are three main steps to accomplishing a linear-time exact-set search
with the Aho-Corasick Automaton. (We assume there exists some dictionary
P which is of interest as the subject of a search.)

i) Build a keyword tree K from the elements p1, p2, . . . pn of the dictionary
P containing n patterns.

ii) Create failure links within the tree K.

iii) Run the pattern matching automaton with the tree K, and using some
arbitrary text T as input. Importantly, this step may be repeated ad infini-
tum with as many target texts as are desired.

We will look at each of these steps in detail.

4.i) Build the Keyword Tree

Begin with a tree composed of only a root node. Add each element pi in
P , such that a single character pij is added at a time, and only if some prefix
of the partial pattern pi1 . . . pij does not already exist in the tree.

In this way, create a branch using each of the characters in pi, possibly
as a sub-branch of an existing branch. Each character in pi is represented by

5

an edge, the “trailing” node from that edge is labeled by the contents of pi

to that point (i.e. the prefix pattern pi1 . . . pij , where j is the character in pi

that we are currently adding). In this way, common prefixes are shared.

When the last character of some pattern pi in P has been added, add an
additional label to the “trailing” node from that edge which contains a cor-
responding number, i. This will be a numbered node, which the automaton
will use as an indicator that the pattern pi has been found. (see step iii).

An example of a prefix tree is shown in Figure 3. It is a slightly enhanced
version of a tree which appears in Aho and Corasick (1975).

Figure 3: Sample prefix tree for P = {hers, his, she, he, is}

6

4.ii) Add the Failure Links

Next, take the newly created prefix tree K and add failure links to it3. To
do this, perform an inorder traversal of the tree. At each node v, look for
the longest suffix of v that exists elsewhere in the tree as a prefix. Create a
directed path (v, nv) where nv is the node which has the same pattern label
as v. If no such prefix pattern exists elsewhere in the tree, set nv = r, where
r is the root of K, and thus create a directed path (v, r).

Three facts are noteworthy here: first, since each edge emanating from the
root is uniquely labeled, any vertex of depth ≤ 1 must have the root r as its
failure link.

Secondly, Gusfield (1997) shows that failure links are unique; that is, for
any node v in K, there exists only one corresponding failure link node nv

creating the unique ordered pair (v, nv).

Finally, we note that consecutively linked failure links create a directed path.
This feature will become important in part iii.

In figure 4 (next page) we present the same prefix tree as in Figure 3, but
with failure links added. Failure links are shown as blue lines, except that
those linking to the root have been omitted for clarity.

3Aho and Corasick (1975) present a linear-time algorithm for the construction of failure
links for a given prefix tree; for brevity we have not included it here.

7

Figure 4: Sample prefix tree for P = {hers, his, she, he, is}, with failure
links.

4.iii) Run the Aho-Corasick Automaton

We now present pseudocode for the ACA, which is due to Gusfield (1995).
This algorithm is named “full AC Search” because it as extension of an ear-
lier algorithm (“AC Search”) which was simpler but placed an unwanted
restriction on the dictionary elements: namely, that no pattern pi in P can
be a proper substring of any other pattern pj in P . This restriction renders
the AC algorithm much less useful in practice, so we will only examine the
full algorithm. Note that we have edited the Gusfield algorithm slightly for
clarity, and added some comments.

8

Algorithm full AC Search

01: l := 1; // l : starting pos of current search in the text
02: c := 1; // c : current character position in the text
03: w := root; // w : the node we are currently at in the tree
04: repeat
05: while there is an edge (w, w′)) labeled T (c)
06: begin // w′ : some child of w that fits the description
07: IF (w′ is a numbered node), OR
08: (there is a directed path of failure links from w′

09: to a numbered node i)
10: THEN
11: report occurrence of Pi, ending at position c;
12: w = w′, and c = c + 1;
13: end;
14: w := nw and l := c− lp(w);
15: until c > n;

The notation T (c) in line 5 indicates a single character of the text T , at
position c. For example, if T = abracadabra, T (3) = r.

After initializing (lines 1 to 3), we begin a traversal of the tree. For each
labeled edge (w, w′) that we find, we examine the trailing node w′ and deter-
mine if it is numbered. If it is, it indicates success - we have found a member
of P in T - and we report it. If it is not numbered, but there is a failure
link, we follow the trail of failure links and move our search to that portion
of the tree. This allows us to avoid backtracking after a failed match - we
can simply pick up the search again from the point we left off, at a different
portion of the tree.

Continuing through the text T in this way, we create an occurrence report
of every instance of a member of P in T .

The algorithm terminates when the character index, c, exceeds the length
of T (line 15). The text T is traversed exactly once.

9

5. Running Time of the Aho-Corasick Automaton

The AC Automaton is composed of three stages: i) creation of the prefix
tree from dictionary P , ii) adding the failure links, and iii) running the au-
tomaton with the text T as input.

For parts i) and ii), Aho and Corasick show in their paper (1975) that the pre-
fix tree, with failure links can be created in linear time. We will not duplicate
their proof here but instead provide a sketch. Consider a partially-completed
tree in which we are to add a new pattern pi. Since at each existing node,
every edge is uniquely labeled, the time to add the new pattern will be at
most O(|pi|). Since our alphabet is assumed to be of fixed length, the entire

tree can be constructed on O(n) time, where n =
xp∑
i=1

|pi| and xp is the num-

ber of patterns in P ; and the failure function can be determined in constant
time for each node.

For part iii), we need to consider the traversal of the tree with text T as
input, and also the time taken by the output function (that is, the function
which reports an occurrence of pi in T). We will consider the time for this
output to be k, where k is the number of matches; that is, a time unit of 1
for each match, to print the output. Then, by examining the AC algorithm
from the previous section it is straightforward to see that we can run the au-
tomaton in O(m + k) time, where m = |T |, and k is the number of matches.

Theorem (Gusfield, 1995): If P is a set of patterns with total length
n, and T is a text of total length m, then one can find all occurrences of T
in patterns from P in O(n) preprocessing time plus O(m + k) search time,
where k is the number of occurrences found.

Thus the total running time for the automaton (including its construction)
is O(n + m + k), a linear bound.

10

6. Comparison With Other Methods, and Conclusions

It has been demonstrated already that the running time of the Aho-Corasick
Automaton (ACA), with m the length of the text T , n the total (cumulative)
length of all patterns in P , and k the total number of matches of P in T , is
O(n+m+k). Yet how significant is this, when compared to other algorithms?

First, compare the ACA with the naive exact-matching search, wherein T is
searched once for each of the z patterns in P . Allowing that a single search
can be run in O(m) time (using the KMP Algorithm or others), there are z
iterations of T , and O(n) amount of work spent looking at the patterns. This
results in a total running time of O(n + mz), which is significant amount of
time compared to the linear search time of the ACA.

Clearly, the ACA is more efficient than naive exact set matching algorithms.
However, there is another highly efficient algorithm that can be considered.
Rather than producing a keyword tree K of the patterns in P , what if a suffix
tree S of the text T was created, and each pattern was searched for in the
suffix tree? In this case, the suffix tree can be built in O(m) time (this is due
to Ukkonen4), and the search itself can be conducted in O(n) time. Then
for k matches, the running time is also O(n + m + k), the same as the ACA
algorithm. However, there is distinct difference between the two algorithms.

When working with two algorithms with similar running time and data of
sufficiently large size, it is useful to consider constant work being done such
as that of the size of the trees being built, and the work done in using each
tree. The Aho-Corasick Automaton, which uses a keyword tree and performs
its search in O(m) time, builds a tree of size n in O(n) time. The suffix tree
will perform its search in O(n) time, and build its tree of size m in O(m) time.

Consider a dictionary P with size significantly larger than its correspond-
ing search text T , and conversely a text T which is significantly larger than
the dictionary P . In the first case, the suffix tree will be produced with
a much smaller size, and in the second case the keyword tree will be con-
structed with a much smaller size. However, while the sizes of the trees are

4E. Ukkonen. (1995) On-line construction of suffix trees. Algorithmica 14(3):249-260.

11

relative to the problem, so is the constant work performed the algorithms it
is a trade off between the tree and the search. Therefore, the work for the
search will be greater with the suffix tree in the former problem, and will be
greater for the keyword tree in the second problem.

Since this balance exists, neither algorithm can be universally determined
to be superior, but one may be more efficient than the other based on the
system (dictionary and text) on which the searches are being run. Clearly, for
massive searches which will take significant amounts of real-world time, the
problem system should be examined and the appropriate algorithm chosen
based on whether the text is relatively large, or the dictionary is relatively
large. Otherwise (that is, for reasonably balanced systems, or for smaller
data sets) the Aho-Corasick algorithm is likely the better choice based on
the easy construction of prefix trees.

Finally, it should be noted there exist certain specific cases for the suffix
tree algorithm that will allow it to be modified to fit both the conditions
mentioned above, trading off the size of the tree for search time. (However,
the running time will still not be increased beyond that of O(n + m + k).)
This advantage is not shared in the ACA, and therefore the suffix tree may
be considered more versatile for these specific cases.

The Aho-Corasick’s efficiency, coupled with its relative simplicity make it
an ideal algorithm for many types of exact-set searches. The lack of a re-
quirement to preprocess the text T makes the linear-time performance of the
AC algorithm especially impressive. Once a dictionary of interest has been
processed, the resulting automaton can be put to work on arbitrary texts,
without further preprocessing.

12

7. Bibliography

1. Aho, Alfred V. and Corasick, Margaret J. Efficient String Matching:
An Aid to Bibliographic Search. Communications of the ACM, June 1975,
Volume 18, Number 6, pp 333-340.

2. Aoe, Jun-ichi. Computer Algorithms: String Pattern Matching Strategies.
Los Alamitos, CA: IEEE Computer Society Press, 1994.

3. Gusfield, Dan. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge, England: Cambridge University Press,
1997.

4. Jones, Neil C. and Pevzner, Pavel A. An Introduction to Bioinformatics Algorithms.
Cambridge, MA: The MIT Press, 2004.

13

