
FPT Algorithms for Perfect Phylogeny

Steven Lonergan

April 15, 2010

1 Introduction
Biologists have long been help back by the limits of compu-
tational power. This is because often times the most impor-
tant questions in computational biology require either ex-
ponential algorithms to solve, or algorithms that are poly-
nomial but have such massive input sizes that their running
times are long. This posses a problem because not only
does it mean the Biologist has to wait for hours (or days)
before a result can be known, but if something was entered
incorrectly the computation must be restarted from scratch.

Computer Scientists enter into the equation as ambas-
sadors of speed. We obsess over trying to make our algo-
rithms run faster and faster until we are able to prove that no
more speed up can possible happen. This is why the mar-
riage between Computer Science and Biology is so beauti-
ful, we are both able to enlighten each other things things
we might miss. Biologists give problems a new spin, al-
lowing it to be seen in a whole new way, while a computer
scientist will try and solve that problem as quick as possi-
ble.

In this report I am concerned with the speed of one
Computational Biology problem. Building phylogenetic
trees is something that Biologists have to do on a regular
basis, and more importantly they often deal with the prob-
lem that the set of characteristics they wish to build the tree
off of has several conflicts. The question then becomes one
of conflict resolution to build the Perfect tree loosing the
minimal amount of information.

The problem, called COMPATIBILITY, is NP-Complete
meaning no polynomial time algorithm is know to solve it.
Furthermore when we have a large set of characteristics it
becomes increasingly difficult to decide which ones to re-
move, and if those that you did remove were in fact the
minimal.

2 Problem Definition
Here we are concerned with two different problems. The
first of which we covered in class and is concerned with
building a perfect phylogenetic tree.

Definition 1. (Building A Perfect Phylogeny): Given a char-
acter state matrix M, build a tree such that no conflict exists

in the tree.

This problem, as we saw in class, is computationally
easy. We are able to detect any conflicts by comparing
each column of the character matrix. A perfect tree is con-
structible if the following lemma holds.

Definition 2. (Definition 6.1 [4]: For each column j of M,
Let Oj be the set of objects whose state is 1 for j. Let Ōj

be the set of objects whose state is 0 for j.

Lemma 1. (Lemma 6.1 [4]: A binary matrix M admits a
perfect phylogeny if and only if for each pair of characters
i and j the sets Oi and Oj are disjoint, or one of them
contains the other.

Slide 13 of lecture 14 shows the that problem is in fact
easy and can be solved in O(MN) time. Finally the prob-
lem that we concern ourself with for the rest of the paper is
that of COMPATIBILITY.

Definition 3. (COMPATIBILITY):
INSTANCE: A character state matrix M with n objects
and m directed binary characters, and a positive integer
B ≤ m.
QUESTION: Is there a subset L of the characters that sat-
isfies Lemma 1 with |L| ≥ B?

3 NP-Complete
In this section we present a fast review of NP-Complete
theory to allow the reader to understand the methods used
later. Showing a problem is NP-Complete is an important
area of computer science research since it allows us to cat-
egorize problems in terms of their running time and allows
someone wishing to solve a problem insight on how diffi-
cult their task might be. Because they are not solvable in
P-Time they are generally considered ’hard’ problems and
often require tremendous amounts of computational time to
solve.

In order to show that a problem is NP-Complete we
need to show two things:

1. Membership in NP

2. Reduction from a known NP-Complete problem

1

3.1 Membership In NP
To show that a problem is a member of NP we need to show
that a solution for the problem can be checked in P-time.
Formally it is defined as follows:

Definition 4. (Membership In NP): A problem P can be
shown to be in NP by showing a possible solution to prob-
lem be can be checked in no more then a polynomial amount
of time.

Note 1. It is important to note here that just because we
are able to check the solution to a problem in P-Time does
not mean we can solve the problem in P-Time.

3.1.1 An Example

Consider the problem of SAT. In SAT we want to decide on
an assignment of variables to a expression such that the ex-
pression evaluates to TRUE. This is a known NPC problem
[1]]. Consider trying to show that it was a member of NP,
therefor we are asking to find a P-time verifier to a solution.

Consider walking down the street and someone hands
you a piece of paper with an expression written on it and
a list of variables and their assignments (such as x0 =
1, x1 = 0, ..., xn = 1). It is easy to see how you can check
to see if the solution is valid, simply trace through the ex-
pression replacing the variables with their assignments and
then go back through and check to see if becomes true. This
can be done naively in two passes of the data allowing us
to check the solution in at most n2 time which is within our
P-Time bound.

3.2 Reductions
Formally for a problem in NP to be considered NP-Complete
we need definition 4 to hold.

Definition 5. (NP-Complete): A problem p is said to be
NP-Complete if:

1. P ∈ NP

2. ∀Q ∈ NP we have a polynomial time reduction from
Q to P

Statement 1 is assumed and membership can be shown
as in section 3.1. Turning our attention to statement 2 we
have to consider a reduction from all problems in NP to
our target problem within a polynomial amount of time.
Although this appears to be a daunting task at first we are
able to use a different method that accomplishes the same
thing.

Consider a known NPC problem, M . From definition
4 we know that all problems in NP must reduce to problem
M . Now if we are trying to show that out problem P is
NPC it is enough to show a reduction from problem M .

Therefor we can relax condition 2 of definition 4 to be the
following:

Definition 6. (NP-Complete): A problem p is said to be
NP-Complete if:

1. P ∈ NP

2. ∃Q ∈ NPC and we have a polynomial time reduc-
tion from Q to P

The COMPATIBILITY problem is shown to be NPC in
Introduction to Computational Molecular Biology. COM-
PATIBILITY can easily be verified in P-Time meaning that
it is a member of NP. The reduction follows from building
the matrix out of a graph that contains a clique. The basic
idea is that whenever we have a pair of nodes that are not
connected in the graph we force a conflict in the matrix.
This can be done by having 3 objects in our matrix for ev-
ery pair of nodes. If there is no edge between them in the
graph then we assign them the following values to the three
objects: 110 and 011. If there is an edge between the pair
of nodes, then their three objects in the table contain just
0’s. This is because 0’s can never create a conflict.

It is easy to see that a conflict will be created only when
there is no edge in the graph. It then suffices to show that
a clique in the graph will produce the largest set of nodes
to build a perfect phylogeny and our reduction is complete.
Further details can be found here [4]

4 Fixed-Parameter Tractable
Fixed-Parameter Tractable (FPT) algorithms are closely re-
lated to NPC in that they are generally considered compu-
tationally hard problems. The main difference is that as
the name suggests we choice a parameter, k for the prob-
lem and construct our solutions around this parameter. Our
goal then becomes to run exponential parts of the problem
in our parameter k, and not in the input size n.

Intuitively we are trying to solve the problem but doing
as much as we can to the input in polynomial time, and
then running the exponential algorithm on only a very small
subset of the input. Formally FPT is defined as follows:

Definition 7. (FPT): A problem P is said to be FPT if:

1. There exists some parameter k such that k is not the
input size.

2. Run in Time f(k)nO(1)

Note 2. f(k) can be exponential in k as long as it is also
not exponential in n.

2

5 COMPATIBILITY is in FPT
From section 3.3 we know that COMPATIBILITY is NPC.
We will now show that it is also in FPT. We will break the
problem into two parts; 1) Building a conflict graph and
finding a vertex cover and 2) Building the Phylogeny.

5.1 Conflict Graphs and Vertex Cover
The first thing that we need to do to solve the problem is
to take the binary matrix, M , and convert it into a conflict
graph, G(V,E) where each characteristic xi ∈ M is an
node n ∈ V and there is an edge between node xi and xj

if and only if there is a conflict between xi and xj .
From Lemma 1 we know that a conflict occurs only

when one pair of vertices are not a subset of each other, and
not disjoint and that we can decide this in P-Time. We now
have a conflict graph where each edge represents a conflict.
Now we wish to find the minimum set of nodes such that
if we remove all of the those nodes and edges that connect
to those nodes we are left with a graph that has no edges
in it. In other words we are interesting in finding a Vertex
cover of size at most B. When we have obtained the vertex
cover we simply remove those nodes and we are left with
a conflict graph with no conflicts. This means we are now
able to build a perfect phylogeny.

5.2 Vertex Cover is in FPT
In order to finish solving part one of section 5 we need to
show that Vertex Cover is in FPT. Vertex cover is a famous
FPT algorithm and has been proved to be in FPT many
times ([3] for example). I will present a naive approach
here to confirm the proofs. First we need to proof a lemma
about one of the properties of a graph that contains a vertex
cover.

Lemma 2. Given some graph G(V,E), if an edge exists be-
tween two nodes vi and vj , then either vi or vj is in the
vertex cover.

Proof. Let C ⊂ V be a vertex cover of G. Assume vi /∈ C
and vj /∈ C. But then the edge ei,j is not incident to any
nodes in the vertex cover. Therefor either vi or vj must also
be added to C.

Corollary 1. Given a node x ∈ G we must include either x
or N(x) where N(x) is the set of nodes that are connected
to x by an edge.

Proof. Follows directly from Lemma 2.

Theorem 1. Vertex Cover is in FPT

Proof. We are interested in finding a vertex cover of at
most k. Consider Corollary 1, and do the following steps

1. Pick a node x ∈ V and either include x or N(x).

2. Let k = k−1 if we included x, or let k = k−|N(x)|
if we included N(x) in the vertex cover.

3. Remove x, N(X) and all edges that connected x and
N(x). (Figure 1 and figure 2)

After steps 1-3 we are left with a reduced graph. We then
repeat steps 1-3 until either k = 0, k < 0, or |V | = 0. We
can do this for every node in the graph, building a search
tree of the input. The depth of the tree is at most k because
after each step of the search we add at least one node to
the vertex cover. At each branch of the tree with have two
options; 1) include x or include N(x) therefor it becomes
possible to search a tree for a given node x in O(2k) time.
Since we have n nodes we can therefor do an exhaustive
search in O(2kn) time. from Definition 7 we have shown
Vertex Cover to be in FPT.

It should be noted that the proof presented above is a
very naive approach and Vertex Cover has been shown to
be solvable in O(1.2738k + kn) by Chen et all. in 2003
[3]. The proof this running time is technical and is left to
the reader.

Figure 1: Before Removal

Figure 2: Before Removal

6 Algorithm
Consider an instance of the COMPATIBILITY problem from
Definition 3, we now present an FPT algorithm to solve an

3

instance of COMPATIBILITY. We break the problem up
into two parts; 1) find and remove the problem character-
istics and 2) Build the tree with the set of none conflicting
characters.

6.1 Finding Conflicts
Consider a matrix M as defined in Definition 3 and a graph
G(V,E) where each character ci ∈ M is a node vi ∈ V
and an edge ei,j is in the graph iff there exists a conflict be-
tween ci and cj . We have just constructed a conflict graph
for matrix M and now concern ourself with removing the
conflicts.

Lemma 3. By removing all edges from the graph G we can
construct a perfect Phylogeny.

Proof. From Lemma 1 we know that in order to build a per-
fect Phylogeny we need there to exist no conflicts between
characteristics. Therefor removing them from the conflict
graph would allow us to build a perfect phylogeny.

In order to remove all conflicts in G we wish to find
a set of nodes R in the graph such that when we remove
R and all edges incident to R we are left with no edges
remaining in the graph. This now becomes an instance of
Vertex Cover were we are concerned with finding a vertex
cover of size greater then or equal to B where B is the
maximum number of characteristics we wish to remove.

Lemma 4. Removing conflicts can be done in O(2kn) time.

Proof. Since we have shown that removing conflicts is an
instance of the vertex cover it is enough to show that vertex
cover can run in O(2kn) time. Theorem 1 shows this, and
therefor removing conflicts can be done in O(2kn) time.

By running the vertex cover algorithm presented in sec-
tion 5.2 we can decided if it is possible to remove the con-
flicts by removing up to B characteristics, and if it is pos-
sible we can find the minimal set of characteristics, C to
remove in FPT time. We know turn our attention to build-
ing the perfect phylogeny.

6.2 Building The Phylogeny
Consider trying to construct a perfect phylogeny from M ′,
where M ′ is M with the rows corresponding to C removed.

Lemma 5. Construction of a perfect phylogeny tree from
matrix M ′ can be done in O(NM) time.

Proof. Building a perfect phylogeny tree in O(NM) time
is shown on slide 13 of lecture 14.

6.3 COMPATIBILITY is in FPT
Bringing together section 6.1 and section 6.2 we get the
following theorem.

Theorem 2. COMPATIBILITY is in FPT

Proof. Let B equal the parameter k for the problem. We
have shown that the problem reduces to the following:

1. Converting the problem to conflict graph.

2. Finding the minimal set of nodes that when remove
resolve all conflicts.

3. Building the perfect phylogenetic tree.

Showing that all three points can be done in FPT time with
parameter k will show that COMPATIBILITY is in FPT.
1: Converting M into a conflict graph can be done in O(nm2)
by simply comparing each pair of elements row by row.
Since there are n rows in the matrix and O(m2) such pairs
the overall running time is O(nm2).
2: Finding the minimal set of nodes to remove can be done
in O(2kn) time as shown in Lemma 4.
3: Building the tree itself can be done in O(NM) time as
shown in Lemma 5
Bringing it all together we see that it is possible to solve
COMPATIBILITY in O(2kn+nm2 +mn) time. Therefor
by definition 7 COMPATIBILITY is in FPT.

7 Conclusions
We have shown that the problem of COMPATIBILITY is
in FPT which greatly decreases the time required to build
a phylogenetic tree. Consider an example of a of a matrix
that contains 10 characteristics. Now let B = 3. If we were
to not consider the FPT algorithm we would have to search
a tree of size 210 = 1024 where as the FPT algorithm could
solve the problem on the order of 23 = 8.

Given just this small example and considering practical
applications when the size of characteristics is high, but the
number we want to remove remains low we are presented
with an incredibly fast speed up.

Finally the problem of conflict resolution is something
that appears in various areas of computer science. Future
work could explore those areas and see if this result has the
potential to help in an other field.

8 References
1. Cook, S.A. (1971). ”The complexity of theorem prov-

ing procedures”. Proceedings, Third Annual ACM
Symposium on the Theory of Computing, ACM, New
York. pp. 151158. doi:10.1145/800157.805047.

4

2. Garey, M.R.; Johnson, D.S. (1979). Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York: W.H. Freeman. ISBN 0-7167-1045-5

3. Jianer Chen, Iyad A. Kanj: Constrained minimum
vertex cover in bipartite graphs: complexity and pa-
rameterized algorithms. J. Comput. Syst. Sci. 67(4):
833-847 (2003).

4. Meidanis, J and Setubal, J. Introduction to Computa-
tional Molecular Biology. Pacific Groove, CA. Brooks/Cole
Publishing Company. ISBN0-534-95262-3

5

