Student name _____

Student number_____

CSc 428/589B Algorithms in bioinformatics

Midterm exam 2

	Max points	Results
Question 1	10	
Question 2	10	
Question 3	10	
Question 4	10	
Question 5	10	
Question 6	10	
Question 7	10	
Question 8	10	
Question 9	10	
Question 10	10	
Total:	100	

Question 1.

Fill in the missing probabilities for the following Markov models

Question 2.

Use these models in order to answer whether or not the following DNA sequence is from a CpG island.

Assume that the probability of getting C in the first position equals 1 (no begin state)

CCGCACG

Question 3.

Estimate the set of emission and transition probabilities from the following labelled sequence of symbols and associated states for a fair (F) and a loaded (L) 6-sided die:

Symbols	2	6 6 3 4			4	6 5 6			6	
States	F	F	F	F	F	L	L	L	L	
eF(1)=		eF(4)=				eL(1)=			eL(4)=	
eF(2)=		eF(5)=				eL(2)=			eL(5)=	
eF(3)=		eF(6)=				eL(3)=			eL(6)=	
aFF	aFF= aFL=			aLF	=		aLL=			

Question 4.

Which sequence out of the following sequences will be chosen as a center sequence by the SP-star algorithm for multiple sequence alignment?

S1=ACG	
S2=AGT	
S3=ACGT	
S4=ACT	

Question 5.

Produce the matrix of edit distances for each pair of the following strings. This distance matrix will be used for question 6.

English	father
Spanish	padre
Italian	padre
German	vater
Portuguese	pai

	Е	S	Ι	G	Р
Е	0				
S		0			
Ι			0		
G				0	
Р					0

Question 6. Build a phylogenetic tree of languages using the UPGMA algorithm for the distance matrix from question 5. You are NOT required to label the length of all tree edges. Give only a tree topology and an updated distance matrix for each clustering step.

Question 7.

You are given 2 binary matrices representing 5 objects (rows) in terms of 5 characters or traits (columns).

Part 1. Which of the two has a perfect phylogenetic tree?

	1	2	3	4	5	
А	1	1	0	0	0	
В	0	0	1	0	0	
С	1	1	1	0	1	
D	0	0	1	1	0	
Е	0	1	0	0	0	

	1	2	3	4	5	
А	0	0	1	0	1	
В	1	0	0	1	0	
С	0	0	0	0	1	
D	1	0	0	0	0	B
Е	0	1	1	0	1	

Part 2. Build this tree

Question 8.

Find the most parsimonious labeling of internal nodes of the following tree based on a given multiple alignment, using the Fitch algorithm.

X	AAG
Y	ACG
Z	CGA
V	CCG
W	AGA

For character 1:

Final labelling for character 2

The final labelling for all 3 characters:

For the signed permutation shown above answer the following questions

Part 1.

- A. How many breakpoints does the permutation have?
- B. Draw the reality and desire diagram.

Part 2.

How many reversals are required in order to sort this permutation? Justify your answer

Question 10. Describe the Branch and Bound optimization technique and explain how it is applied for solving the large parsimony problem. In your description, give an explicit answer to the following questions:

- 1. Does the B & B technique guarantee to find the optimal solution?
- 2. What is the main property of the search space which allows us to use the B & B technique?
- 3. Does B & B always (i.e. in the worst case) run in polynomial time?