String Distance
 and Dynamic Programming

Lecture 5

Life is similar

- Life is based on a repertoire of successful structural and interrelated building blocks which are passed around
- The vast majority of proteins are the result of a series of genetic duplications and subsequent modifications
- "Everything in life is so similar that the same genes that work in flies are the ones that work in humans" (Wieschaus, 1995)

Comparison and analogy

- By identifying and comparing related objects we can distinguish variable and conserved features, and thereby determine what is crucial to structure and function
- Biological universality occurs at many levels of details, so we can compare not only the sequence data, but 3D shapes, chemical pathways, morphological features etc.

Why compare biosequences

- The biological sequences encode and reflect higher-level molecular structures and mechanisms
- In bimolecular sequences (DNA, RNA or protein), high sequence similarity usually implies significant structural and functional similarity
- A tractable, though partly heuristic way to infer the structure and function of an unknown protein is to search for the similar known proteins at the sequence level

Keep in mind

- There is not a one-to-one correspondence between similar sequences and similar structures or between sequences and functions:
- Similar structures can be obtained from completely unrelated sequences
- Very similar sequences can produce very different structures depending on the location of a change

A shift to approximate pattern matching

- Approximate - means some errors are allowed in valid matches
- The shift is accompanied by a shift in technique: dynamic programming

Dynamic programming

The main tool in approximate pattern matching

The cheapest path

Problem:

find the cheapest path from $(0,0)$ to $(6,6)$

The path without a map

We will always choose the South-East direction (diagonal), and we will pay $4 \$$

Since we don't know that if we move strictly East or South, there are more free-pass cells

Sub-problems approach

The sub-problems approach

The recurrence relation -

base condition

When $\mathrm{i}=0$, there is no cheaper way of going from $(0,0)$ to $(0, j)$ than to pay j \$ - heading strictly to the right (East)

The same for $\mathrm{j}=0$.
The base condition:
if $\mathrm{i}=0$ then $\operatorname{COST}(\mathrm{i}, \mathrm{j})=\mathrm{j}$
if $\mathrm{j}=0$ then $\operatorname{COST}(\mathrm{i}, \mathrm{j})=\mathrm{i}$

The recurrence relation (for $\mathrm{i}>0$ and $\mathrm{j}>0$)

$\operatorname{cost}(\mathrm{i}, \mathrm{j})=\min \left\{\begin{array}{l}\operatorname{cost}(\mathrm{i}-1, \mathrm{j})+1 \\ \operatorname{cost}(\mathrm{i}, \mathrm{j}-1)+1 \\ \operatorname{cost}(\mathrm{i}-1, \mathrm{j}-1)+\operatorname{DIAGONAL}(\mathrm{i}, \mathrm{j})\end{array}\right.$

For each case, what is the best move?

The recurrence relation

$\operatorname{cost}(\mathrm{i}, \mathrm{j})=\min \left\{\begin{array}{l}\operatorname{cost}(\mathrm{i}-1, \mathrm{j})+1 \\ \operatorname{cost}(\mathrm{i}, \mathrm{j}-1)+1 \\ \operatorname{cost}(\mathrm{i}-1, \mathrm{j}-1)+\operatorname{DIAGONAL}(\mathrm{i}, \mathrm{j})\end{array}\right.$

The best moves:

The top-down (usual) recursion

$\operatorname{cost}(\mathrm{i}, \mathrm{j})=\min \left\{\begin{array}{l}\operatorname{cost}(\mathrm{i}-1, \mathrm{j})+1 \\ \operatorname{cost}(\mathrm{i}, \mathrm{j}-1)+1 \\ \operatorname{cost}(\mathrm{i}-1, \mathrm{j}-1)+\operatorname{DIAGONAL}(\mathrm{i}, \mathrm{j})\end{array}\right.$
algorithm cheepestCost (array diagonalCost, N, M)
return cost (N, M)
algorithm $\boldsymbol{\operatorname { c o s t }}(\mathrm{i}, \mathrm{j})$
if $i=0$ then
return j
if $j=0$ then
return i
return min $(\boldsymbol{\operatorname { c o s t }}(i-1, j)+1, \boldsymbol{\operatorname { c o s t }}(i, j-1)+1, \boldsymbol{\operatorname { c o s t }}(i-1, j-1)+$ diagonalCost $[i][j])$

The recursion tree

$\mathrm{O}\left(3^{\mathrm{N}}\right)$?
But there are only N*M different combinations

The recursion tree

$\mathrm{O}\left(3^{\mathrm{N}}\right)$?
We call the recursive function multiple times with the same parameters

Dynamic programming steps

- The recurrence relation
- The bottom-up computation
- The traceback

Dynamic programming I

, The recurrence relation

- The bottom-up computation
- The traceback

The recurrence relation

The base condition:

```
if i=0 then COST(i,j)=j
if j=0 then COST(i,j)=i
```

The main relation (for $i>0$ and $j>0$)
$\operatorname{COST}(\mathrm{i}, \mathrm{j})=\min \left\{\begin{array}{l}\operatorname{COST}(\mathrm{i}-1, \mathrm{j})+1 \\ \operatorname{COST}(\mathrm{i}, \mathrm{j}-1)+1 \\ \operatorname{COST}(\mathrm{i}-1, \mathrm{j}-1)+\operatorname{DIAGONAL}(\mathrm{i}, \mathrm{j})\end{array}\right.$

Dynamic programming II

- The recurrence relation > The bottom-up computation
- The traceback

The bottom-up computation

- Fill in the best values for each cell of the $\mathrm{N}^{*} \mathrm{M}$ table starting from the lowest values
- First, compute the basic values of recursion for $\mathrm{i}=0$ and for $\mathrm{j}=0$
- Apply recursion relation for computing the value of each cell from the lowest numbers of i and j to the largest
- At the end, we will have the cost of the best path in the cell (N, M)

Fill values for $\mathrm{i}=0$ and for $\mathrm{j}=0$ (the base recursion condition)

There is no cheaper way of going to the point $(2,0)$ than paying 2 \$

Fill values for $\mathrm{i}=1$
 (from left to right)

Cell $(1,2)=1$
since the
cheapest possible way is to continue the free path through the cell $(1,1)$

Fill in the entire table
 (left-to-right top-down)

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| | 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| 2 | 1 | 1 | 1 | 2 | 3 | 4 | |
| | 3 | 2 | 2 | 2 | 1 | 2 | 3 |
| 4 | 3 | 2 | 3 | 2 | 2 | 3 | |
| 5 | 4 | 3 | 3 | 3 | 3 | 3 | |
| | 6 | 5 | 4 | 4 | 4 | 4 | 3 |

The cheapest possible path costs $3 \$$

But what is this path?

Dynamic programming III

- The recurrence relation
- The bottom-up computation , The traceback

Keeping track of the source

Keeping track of the source

Keeping track of the source

Trace back -
how did we get the path with the cost 3

Dynamic programming with electronic tables. Cost

- Build the input table - the cost of passing through any cell by diagonal
- Create the distance table, fill the first row and the first column according to the basic recursion
- Insert the recursion formula in cell [1][1]:
- C19= MIN(B18+C3,B19+1,C18+1)
- Spread the formula to the rest of the table by drag-andrelease
- Read the cost of the cheapest path in cell [N][M] - the last cell of the cost table

Dynamic programming with electronic tables. Cost

$\mathrm{C} 19=\mathrm{MIN}(\mathrm{B} 18+\mathrm{C} 3, \mathrm{~B} 19+1, \mathrm{C} 18+1)$

$$
\begin{aligned}
& \begin{array}{l}
i=C \\
j-1=18
\end{array}
\end{aligned}
$$

Dynamic programming with electronic tables. Forward path

Excel code

C35=
IF(B18+C3<B19+1,
IF(B18+C3<C18+1,
"DownRight",
"Right"),
"Down")

IF(B18+C3<B19+1)
IF(B18+C3<C18+1)
C35="DownRight"
ELSE
C35="Right"

ELSE

C35="Down"

Shows one of the possible paths to obtain the smallest cost for a path from $(0,0)$ to the current cell

Dynamic programming with electronic tables. Backward path

Excel code

C49=
IF(C35="Down",
"Up",
IF(C35="Right",
"Left",
"UpLeft"))

IF(C35 ="Down")
C49="Up"
ELSE
IF(C35="Right")
C49="Left"
ELSE
C49="UpLeft"

Replacing by the opposite direction - from the destination cell to the source cell

Dynamic programming with electronic tables. Traceback

Excel code

B60=
IF(AND(C61="X",C49="UpLeft"), " X ",
IF(AND(C60="X",C48="Left"), " X ",

IF(AND(B61="X",B49="Up"), " X ",
"-"))

```
IF( C61="X"AND C49="UpLeft")
    B60="X"
ELSE IF( C60="X" AND C48="Left")
    B60="X"
ELSE IF( B61="X" AND B49="Up")
    B60="X"
ELSE
    B60="-"
```

By placing X in the destination cell, this code reconstructs the path which gave the total minimum cost: cell is marked X if the path went through this cell, otherwise it is marked -.

Alternative: write the program (add the traceback and the output of the path)

```
Input: array diagonalCost (NxM)
allocate array DPTable (NxM)
algorithm getCheapestCost()
        fillDPTable( )
        return DPTable [N] [M]
algorithm fillDPTable()
    DPTable [0][0]:=0
    forifrom 1 to N:
    DPTable [i][0]:=i
    for j from 1 to M:
    DPTable [0][j]:=j
    for i from 1 to N:
        for j from 1 to M:
        DPtable [i][j]:=min (DPtable [i-1][j-1]+ diagonalCost [i][j],
        DPtable [i-1][j]+1, DPtable [i][j-1]+ 1)
```


Complexity of the DP algorithm

- 2 nested loops: O(NM)

Edit distance

String dissimilarity

Edit Operations

- We can transform the second string S2 into the first string S1 by applying a sequence of edit operations on S2 :
- Deleting 1 symbol
- Inserting 1 symbol
- Replacing 1 symbol

In total, 4 edit operations

String alignment

- An alignment of 2 strings is obtained by first inserting spaces (gaps), either into or at the end of both strings, and then placing the 2 resulting strings one above the other, so that every character or space in either string is opposite a single character or space in the other string

S1	a	c	t	-	-	a	t	g
S2	a	-	t	a	c	a	-	g

4 gaps,
no mismatches

Edit distance

- The edit distance between two strings is defined as the minimum number of edit operations needed to transform one string into another

In total, 3 edit operations

Optimal alignment

- An optimal alignment is obtained from the calculation of the edit distance

The edit distance problem

- Compute the edit distance between two strings along with a sequence of the operations which describe the transformation

Analogy with the cheapest path

The dynamic programming solution to the edit distance problem

- Trivially follows from the solution for the cheapest path:
- If we moved strictly down in the grid, we inserted 1 symbol into S2
- If we moved strictly to the right, we deleted 1 symbol from S2
- If we moved by diagonal of cost 0 , we matched the corresponding characters
- If we moved by diagonal of cost 1, we replaced one symbol in S2 with the corresponding symbol in S1

