
String Distance 
and Dynamic Programming

Lecture 5



Life is similar

Life is based on a repertoire of successful 
structural and interrelated building blocks 
which are passed around 
The vast majority of proteins are the result of 
a series of genetic duplications and 
subsequent modifications
“Everything in life is so similar that the same 
genes that work in flies are the ones that 
work in humans” (Wieschaus, 1995)



Comparison and analogy

By identifying and comparing related objects 
we can distinguish variable and conserved 
features, and thereby determine what is 
crucial to structure and function
Biological universality occurs at many levels 
of details, so we can compare not only the 
sequence data, but 3D shapes, chemical 
pathways, morphological features etc.



Why compare biosequences

The biological sequences encode and reflect 
higher-level molecular structures and 
mechanisms
In bimolecular sequences (DNA, RNA or 
protein), high sequence similarity 
usually implies significant structural 
and functional similarity
A tractable, though partly heuristic way to 
infer the structure and function of an 
unknown protein is to search for the similar 
known proteins at the sequence level



Keep in mind

There is not a one-to-one 
correspondence between similar 
sequences and similar structures or 
between sequences and functions:

Similar structures can be obtained from 
completely unrelated sequences
Very similar sequences can produce very 
different structures depending on the 
location of a change



A shift to approximate pattern 
matching

Approximate – means some errors are 
allowed in valid matches
The shift is accompanied by a shift in 
technique: dynamic programming



Dynamic programming

The main tool in approximate 
pattern matching



The cheapest path
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Problem: 

find the cheapest path 
from (0,0) to (6,6)



The path without a map
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We will always choose the 
South-East direction (diagonal), 
and we will pay 4$

Since we don’t know that if we 
move strictly East or South, 
there are more free-pass cells 



Sub-problems approach
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The sub-problems approach
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And this is true for any cell – 
what path to chose depends on 
the cheapest paths  to the left, 
upper, and upper-left corner. 
Since we are choosing only 1 
step, we can take the min of the 
result
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The recurrence relation – 
base condition
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When i=0, there is no 
cheaper way of going from 
(0,0) to (0,j) than to pay j $ 
- heading strictly to the 
right (East)

The same for j=0.

The base condition:

if i=0 then COST(i,j)=j

if j=0 then COST(i,j)=i



The recurrence relation 
(for i>0 and j>0)
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The recurrence relation
COST(i-1,j)+1

COST(i,j)=min      COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)
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The top-down (usual) 
recursion

COST(i-1,j)+1

COST(i,j)=min      COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)

algorithm cheepestCost ( array diagonalCost, N, M )

return cost ( N, M )

algorithm cost ( i, j)

if i=0 then

return j

if j=0 then

return i

return min (cost ( i-1, j ) +1, cost ( i, j-1)+1, cost ( i-1, j-1)+diagonalCost [i] [j] )



The recursion tree

O(3N) ?

But there are only N*M 
different combinations



The recursion tree

O(3N) ?

We call the recursive 
function multiple times 
with the same parameters



Dynamic programming steps

• The recurrence relation
• The bottom-up computation
• The traceback



Dynamic programming I

The recurrence relation
• The bottom-up computation
• The traceback



The recurrence relation

COST(i-1,j)+1

COST(i,j)=min      COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)

The main relation ( for i>0 and j>0)

if i=0 then COST(i,j)=j
if j=0 then COST(i,j)=i

The base condition:



Dynamic programming II

• The recurrence relation
The bottom-up computation

• The traceback



The bottom-up computation

Fill in the best values for each cell of the N*M 
table starting from the lowest values
First, compute the basic values of recursion –
for i=0 and for j=0
Apply recursion relation for computing the 
value of each cell from the lowest numbers of 
i and j to the largest
At the end, we will have the cost of the best 
path in the cell (N,M) 



Fill values for i=0 and for j=0 
(the base recursion condition)

6
5
4
3
2
1

6543210
E

S

There is no 
cheaper way of 
going to the 
point (2,0) than 
paying 2 $



Fill values for i=1 
(from left to right)

6
5
4
3
2

5432101
6543210

E

S

Cell(1,2)=1

since the 
cheapest 
possible way is 
to continue the 
free path 
through the cell 
(1,1)



Fill in the entire table 
(left-to-right top-down)

3444456
3333345
3223234
3212223
4321112
5432101
6543210

E

S

The cheapest 
possible path 
costs 3$

But what is this 
path?



Dynamic programming III

• The recurrence relation
• The bottom-up computation

The traceback



Keeping track of the source

6
5
4
3
2
1

6543210
E

S



Keeping track of the source
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Keeping track of the source

3444456
3333345
3223234
3212223
4321112
5432101
6543210

E

S



Trace back – 
how did we get the path with the cost 3

3444456
3333345
3223234
3212223
4321112
5432101
6543210

E

S



Dynamic programming with 
electronic tables. Cost

Build the input table – the cost of passing through any 
cell by diagonal
Create the distance table, fill the first row and the first 
column according to the basic recursion
Insert the recursion formula in cell [1][1]:

C19= MIN(B18+C3,B19+1,C18+1)

Spread the formula to the rest of the table by drag-and-
release
Read the cost of the cheapest path in cell [N][M] – the 
last cell of the cost table



Dynamic programming with 
electronic tables. Cost

C19=MIN(B18+C3,B19+1,C18+1)

Current cell: 
i=C, j=19 i-1=B, 

j-1=18
i-1=B, 
j=19

i=C,  
j-1=18

The cost of passing through the 
corresponding cell of the input table



Dynamic programming with 
electronic tables. Forward path

C35=
IF(B18+C3<B19+1,

IF(B18+C3<C18+1,
"DownRight",
"Right"),

"Down")

IF(B18+C3<B19+1)
IF(B18+C3<C18+1) 

C35="DownRight“
ELSE

C35="Right“
ELSE

C35="Down"

Excel code

Shows one of the possible paths to obtain the smallest cost for a path from (0,0) 
to the current cell 



Dynamic programming with 
electronic tables. Backward path

C49=
IF(C35="Down",

"Up",
IF(C35="Right",

"Left",
"UpLeft"))

IF(C35 ="Down“)
C49=“Up”

ELSE
IF(C35=“Right”) 

C49=“Left“
ELSE

C49=“UpLeft“

Excel code

Replacing by the opposite direction – from the destination cell to the source cell



Dynamic programming with 
electronic tables. Traceback

B60=
IF(AND(C61="X",C49="UpLeft"),

"X",
IF(AND(C60="X",C48="Left"), 

"X",
IF(AND(B61="X",B49="Up"),

"X",
"-")))

IF( C61="X“AND C49="UpLeft")
B60="X"

ELSE IF( C60="X“ AND C48="Left")
B60="X"

ELSE IF( B61="X“ AND B49="Up")
B60="X“

ELSE
B60=“-"

Excel code

By placing X in the destination cell, this code reconstructs the path which gave 
the total minimum cost: cell is marked X if the path went through this cell, 
otherwise it is marked -.



Alternative: write the program 
(add the traceback and the output of the path)

Input: array diagonalCost (NxM)
allocate array DPTable (NxM)

algorithm getCheapestCost( )
fillDPTable( )
return DPTable [N] [M]

algorithm fillDPTable()
DPTable [0][0]:=0
for i from 1 to N:

DPTable [i][0]:=i
for j from 1 to M:

DPTable [0][j]:=j
for i from 1 to N:

for j from 1 to M:
DPtable [i][j]:=min (DPtable [i-1][j-1]+ diagonalCost [i][j],

DPtable [i-1][j]+1, DPtable [i][j-1]+ 1)



Complexity of the DP algorithm

2 nested loops: O(NM)



Edit distance

String dissimilarity



Edit Operations

We can transform the second string S2 into 
the first string S1 by applying a sequence of 
edit operations on S2 :

Deleting 1 symbol
Inserting 1 symbol
Replacing 1 symbol

S1 a c t a t g
S2 a t a c a g

Insert c Delete a, c Insert t

In total, 4 edit 
operations



String alignment
An alignment of 2 strings is obtained by first 
inserting spaces (gaps), either into or at the end of 
both strings, and then placing the 2 resulting strings 
one above the other, so that every character or 
space in either string is opposite a single character 
or space in the other string

S1 a c t - - a t g
S2 a - t a c a - g

4 gaps, 

no mismatches

alignment



Edit distance

The edit distance between two strings 
is defined as the minimum number of 
edit operations needed to transform 
one string into another

S1 a c t a t g
S2 a t a c a g

Insert c Replace c 
by t

Delete a

In total, 3 edit 
operations



Optimal alignment

An optimal alignment is obtained from 
the calculation of the edit distance

S1 a c t a t - g
S2 a - t a c a g

2 gaps, 

1 mismatch

Optimal 
alignment



The edit distance problem

Compute the edit distance between two 
strings along with a sequence of the 
operations which describe the 
transformation



Analogy with the cheapest path
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The dynamic programming solution 
to the edit distance problem

Trivially follows from the solution for the 
cheapest path:

If we moved strictly down in the grid, we inserted 
1 symbol into S2
If we moved strictly to the right, we deleted 1 
symbol from S2
If we moved by diagonal of cost 0, we matched 
the corresponding characters
If we moved by diagonal of cost 1, we replaced 
one symbol in S2 with the corresponding symbol 
in S1
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