
String Distance
and Dynamic Programming

Lecture 5

Life is similar

Life is based on a repertoire of successful
structural and interrelated building blocks
which are passed around
The vast majority of proteins are the result of
a series of genetic duplications and
subsequent modifications
“Everything in life is so similar that the same
genes that work in flies are the ones that
work in humans” (Wieschaus, 1995)

Comparison and analogy

By identifying and comparing related objects
we can distinguish variable and conserved
features, and thereby determine what is
crucial to structure and function
Biological universality occurs at many levels
of details, so we can compare not only the
sequence data, but 3D shapes, chemical
pathways, morphological features etc.

Why compare biosequences

The biological sequences encode and reflect
higher-level molecular structures and
mechanisms
In bimolecular sequences (DNA, RNA or
protein), high sequence similarity
usually implies significant structural
and functional similarity
A tractable, though partly heuristic way to
infer the structure and function of an
unknown protein is to search for the similar
known proteins at the sequence level

Keep in mind

There is not a one-to-one
correspondence between similar
sequences and similar structures or
between sequences and functions:

Similar structures can be obtained from
completely unrelated sequences
Very similar sequences can produce very
different structures depending on the
location of a change

A shift to approximate pattern
matching

Approximate – means some errors are
allowed in valid matches
The shift is accompanied by a shift in
technique: dynamic programming

Dynamic programming

The main tool in approximate
pattern matching

The cheapest path

E

S

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1$

1$ 1$

1$ 1$

Free
pass

Problem:

find the cheapest path
from (0,0) to (6,6)

The path without a map

1
1

1
1

E

S

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1$

1$ 1$

1$ 1$

Free
pass

We will always choose the
South-East direction (diagonal),
and we will pay 4$

Since we don’t know that if we
move strictly East or South,
there are more free-pass cells

Sub-problems approach

E

S

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1$

1$ 1$

1$ 1$

If we knew the cheapest
paths
from (0,0) to (5,5)
from (0,0) to (6,5)
from (0,0) to (5,6)
we could choose the best
last step to the destination:
For example, if:

?

? ?

1$

1$

3

4 2
1$

1$

3

4 2
The best
last step

The sub-problems approach

E

S

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1$

1$ 1$

1$ 1$

Free
pass

And this is true for any cell –
what path to chose depends on
the cheapest paths to the left,
upper, and upper-left corner.
Since we are choosing only 1
step, we can take the min of the
result

?

? ?

1$

1$

3

4 2
1$

1$

3

4 2
The best
last step

The recurrence relation –
base condition

E

S

0 1 2 3 4 5 6
0

1

2

3

4

5

6

When i=0, there is no
cheaper way of going from
(0,0) to (0,j) than to pay j $
- heading strictly to the
right (East)

The same for j=0.

The base condition:

if i=0 then COST(i,j)=j

if j=0 then COST(i,j)=i

The recurrence relation
(for i>0 and j>0)

1$

1$

3

4 2
COST(i-1,j)+1

COST(i,j)=min COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)

For each case, what is the best move?

1$

1$

2

4 4

1$

1$

4

3 4

1$

1$

3

4 3
1$

The recurrence relation
COST(i-1,j)+1

COST(i,j)=min COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)

The best moves:

1$

1$

2

4 4

1$

1$

4

3 4

1$

1$

3

4 3
1$

1$

1$

3

4 3

1$

1$

3

4 3
or

or

The top-down (usual)
recursion

COST(i-1,j)+1

COST(i,j)=min COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)

algorithm cheepestCost (array diagonalCost, N, M)

return cost (N, M)

algorithm cost (i, j)

if i=0 then

return j

if j=0 then

return i

return min (cost (i-1, j) +1, cost (i, j-1)+1, cost (i-1, j-1)+diagonalCost [i] [j])

The recursion tree

O(3N) ?

But there are only N*M
different combinations

The recursion tree

O(3N) ?

We call the recursive
function multiple times
with the same parameters

Dynamic programming steps

• The recurrence relation
• The bottom-up computation
• The traceback

Dynamic programming I

The recurrence relation
• The bottom-up computation
• The traceback

The recurrence relation

COST(i-1,j)+1

COST(i,j)=min COST(i,j-1)+1

COST(i-1,j-1)+DIAGONAL(i,j)

The main relation (for i>0 and j>0)

if i=0 then COST(i,j)=j
if j=0 then COST(i,j)=i

The base condition:

Dynamic programming II

• The recurrence relation
The bottom-up computation

• The traceback

The bottom-up computation

Fill in the best values for each cell of the N*M
table starting from the lowest values
First, compute the basic values of recursion –
for i=0 and for j=0
Apply recursion relation for computing the
value of each cell from the lowest numbers of
i and j to the largest
At the end, we will have the cost of the best
path in the cell (N,M)

Fill values for i=0 and for j=0
(the base recursion condition)

6
5
4
3
2
1

6543210
E

S

There is no
cheaper way of
going to the
point (2,0) than
paying 2 $

Fill values for i=1
(from left to right)

6
5
4
3
2

5432101
6543210

E

S

Cell(1,2)=1

since the
cheapest
possible way is
to continue the
free path
through the cell
(1,1)

Fill in the entire table
(left-to-right top-down)

3444456
3333345
3223234
3212223
4321112
5432101
6543210

E

S

The cheapest
possible path
costs 3$

But what is this
path?

Dynamic programming III

• The recurrence relation
• The bottom-up computation

The traceback

Keeping track of the source

6
5
4
3
2
1

6543210
E

S

Keeping track of the source

6
5
4
3
2

5432101
6543210

E

S

Keeping track of the source

3444456
3333345
3223234
3212223
4321112
5432101
6543210

E

S

Trace back –
how did we get the path with the cost 3

3444456
3333345
3223234
3212223
4321112
5432101
6543210

E

S

Dynamic programming with
electronic tables. Cost

Build the input table – the cost of passing through any
cell by diagonal
Create the distance table, fill the first row and the first
column according to the basic recursion
Insert the recursion formula in cell [1][1]:

C19= MIN(B18+C3,B19+1,C18+1)

Spread the formula to the rest of the table by drag-and-
release
Read the cost of the cheapest path in cell [N][M] – the
last cell of the cost table

Dynamic programming with
electronic tables. Cost

C19=MIN(B18+C3,B19+1,C18+1)

Current cell:
i=C, j=19 i-1=B,

j-1=18
i-1=B,
j=19

i=C,
j-1=18

The cost of passing through the
corresponding cell of the input table

Dynamic programming with
electronic tables. Forward path

C35=
IF(B18+C3<B19+1,

IF(B18+C3<C18+1,
"DownRight",
"Right"),

"Down")

IF(B18+C3<B19+1)
IF(B18+C3<C18+1)

C35="DownRight“
ELSE

C35="Right“
ELSE

C35="Down"

Excel code

Shows one of the possible paths to obtain the smallest cost for a path from (0,0)
to the current cell

Dynamic programming with
electronic tables. Backward path

C49=
IF(C35="Down",

"Up",
IF(C35="Right",

"Left",
"UpLeft"))

IF(C35 ="Down“)
C49=“Up”

ELSE
IF(C35=“Right”)

C49=“Left“
ELSE

C49=“UpLeft“

Excel code

Replacing by the opposite direction – from the destination cell to the source cell

Dynamic programming with
electronic tables. Traceback

B60=
IF(AND(C61="X",C49="UpLeft"),

"X",
IF(AND(C60="X",C48="Left"),

"X",
IF(AND(B61="X",B49="Up"),

"X",
"-")))

IF(C61="X“AND C49="UpLeft")
B60="X"

ELSE IF(C60="X“ AND C48="Left")
B60="X"

ELSE IF(B61="X“ AND B49="Up")
B60="X“

ELSE
B60=“-"

Excel code

By placing X in the destination cell, this code reconstructs the path which gave
the total minimum cost: cell is marked X if the path went through this cell,
otherwise it is marked -.

Alternative: write the program
(add the traceback and the output of the path)

Input: array diagonalCost (NxM)
allocate array DPTable (NxM)

algorithm getCheapestCost()
fillDPTable()
return DPTable [N] [M]

algorithm fillDPTable()
DPTable [0][0]:=0
for i from 1 to N:

DPTable [i][0]:=i
for j from 1 to M:

DPTable [0][j]:=j
for i from 1 to N:

for j from 1 to M:
DPtable [i][j]:=min (DPtable [i-1][j-1]+ diagonalCost [i][j],

DPtable [i-1][j]+1, DPtable [i][j-1]+ 1)

Complexity of the DP algorithm

2 nested loops: O(NM)

Edit distance

String dissimilarity

Edit Operations

We can transform the second string S2 into
the first string S1 by applying a sequence of
edit operations on S2 :

Deleting 1 symbol
Inserting 1 symbol
Replacing 1 symbol

S1 a c t a t g
S2 a t a c a g

Insert c Delete a, c Insert t

In total, 4 edit
operations

String alignment
An alignment of 2 strings is obtained by first
inserting spaces (gaps), either into or at the end of
both strings, and then placing the 2 resulting strings
one above the other, so that every character or
space in either string is opposite a single character
or space in the other string

S1 a c t - - a t g
S2 a - t a c a - g

4 gaps,

no mismatches

alignment

Edit distance

The edit distance between two strings
is defined as the minimum number of
edit operations needed to transform
one string into another

S1 a c t a t g
S2 a t a c a g

Insert c Replace c
by t

Delete a

In total, 3 edit
operations

Optimal alignment

An optimal alignment is obtained from
the calculation of the edit distance

S1 a c t a t - g
S2 a - t a c a g

2 gaps,

1 mismatch

Optimal
alignment

The edit distance problem

Compute the edit distance between two
strings along with a sequence of the
operations which describe the
transformation

Analogy with the cheapest path

g
a
t
a
c
a

S1
gcactaS2

E

S

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1
insertion

1deletion 1

1

1
replacement

Cost 0 –
characters

match

The dynamic programming solution
to the edit distance problem

Trivially follows from the solution for the
cheapest path:

If we moved strictly down in the grid, we inserted
1 symbol into S2
If we moved strictly to the right, we deleted 1
symbol from S2
If we moved by diagonal of cost 0, we matched
the corresponding characters
If we moved by diagonal of cost 1, we replaced
one symbol in S2 with the corresponding symbol
in S1

	String Distance �and Dynamic Programming
	Life is similar
	Comparison and analogy
	Why compare biosequences
	Keep in mind
	A shift to approximate pattern matching
	Dynamic programming
	The cheapest path
	The path without a map
	Sub-problems approach
	The sub-problems approach
	The recurrence relation – �base condition
	The recurrence relation�(for i>0 and j>0)
	The recurrence relation
	The top-down (usual) recursion
	The recursion tree
	The recursion tree
	Dynamic programming steps
	Dynamic programming I
	The recurrence relation
	Dynamic programming II
	The bottom-up computation
	Fill values for i=0 and for j=0 �(the base recursion condition)
	Fill values for i=1 �(from left to right)
	Fill in the entire table �(left-to-right top-down)
	Dynamic programming III
	Keeping track of the source
	Keeping track of the source
	Keeping track of the source
	Trace back – �how did we get the path with the cost 3
	Dynamic programming with electronic tables. Cost
	Dynamic programming with electronic tables. Cost
	Dynamic programming with electronic tables. Forward path
	Dynamic programming with electronic tables. Backward path
	Dynamic programming with electronic tables. Traceback
	Alternative: write the program �(add the traceback and the output of the path)
	Complexity of the DP algorithm
	Edit distance
	Edit Operations
	String alignment
	Edit distance
	Optimal alignment
	The edit distance problem
	Analogy with the cheapest path
	The dynamic programming solution to the edit distance problem

