String Distance and Dynamic Programming

Lecture 5

Life is similar

- Life is based on a repertoire of successful structural and interrelated building blocks which are passed around
- The vast majority of proteins are the result of a series of genetic duplications and subsequent modifications
- "Everything in life is so similar that the same genes that work in flies are the ones that work in humans" (Wieschaus, 1995)

Comparison and analogy

- By identifying and comparing related objects we can distinguish variable and conserved features, and thereby determine what is crucial to structure and function
- Biological universality occurs at many levels of details, so we can compare not only the sequence data, but 3D shapes, chemical pathways, morphological features etc.

Why compare biosequences

- The biological sequences encode and reflect higher-level molecular structures and mechanisms
- In bimolecular sequences (DNA, RNA or protein), high sequence similarity <u>usually</u> implies significant structural and functional similarity
- A tractable, though partly heuristic way to infer the structure and function of an unknown protein is to search for the similar known proteins at the sequence level

Keep in mind

- There is not a one-to-one correspondence between similar sequences and similar structures or between sequences and functions:
 - Similar structures can be obtained from completely unrelated sequences
 - Very similar sequences can produce very different structures depending on the location of a change

A shift to approximate pattern matching

- Approximate means some errors are allowed in valid matches
- The shift is accompanied by a shift in technique: dynamic programming

Dynamic programming

The main tool in approximate pattern matching

The path without a map

S

Sub-problems approach

If we knew the cheapest

1\$

paths from (0,0) to (5,5) from (0,0) to (6,5) from (0,0) to (5,6) we could choose the best last step to the destination: For example, if:

The sub-problems approach

Е

And this is true for any cell – what path to chose depends on the cheapest paths to the left, upper, and upper-left corner. Since we are choosing only 1 step, we can take the min of the result

The recurrence relation – base condition

When i=0, there is no cheaper way of going from (0,0) to (0,j) than to pay j \$ - heading strictly to the right (East)

The same for j=0.

The base condition:

if i=0 then COST(i,j)=j

if j=0 then COST(i,j)=i

For each case, what is the best move?

The recurrence relation

	COST(i-1,j)+1
COST(i,j)=min	COST(i,j-1)+1
	COST(i-1,j-1)+DIAGONAL(i,j)

The best moves:

The top-down (usual) recursion

	COST(i-1,j)+1				
COST(i,j)=min <	COST(i,j-1)+1				
	COST(i-1,j-1)+DIAGONAL(i,j)				

algorithm cheepestCost (array diagonalCost, N, M)

```
return cost (N, M)
```

```
algorithm cost (i, j)
```

if *i*=0 then

return j

```
if j=0 then
```

return i

return min (*cost* (*i*-1, *j*) +1, *cost* (*i*, *j*-1)+1, *cost* (*i*-1, *j*-1)+*diagonalCost* [*i*] [*j*])

O(3^N) ?

But there are only N*M different combinations

O(3^N) ?

We call the recursive function multiple times with the same parameters

Dynamic programming steps

- The recurrence relation
- The bottom-up computation
- The traceback

Dynamic programming I

> The recurrence relation

- The bottom-up computation
- The traceback

The recurrence relation

The base condition:

if i=0 then COST(i,j)=j if j=0 then COST(i,j)=i

The main relation (for i>0 and j>0)

	COST(i-1,j)+1				
COST(i,j)=min	COST(i,j-1)+1				
	COST(i-1,j-1)+DIAGONAL(i,j)				

Dynamic programming II

- The recurrence relation
- > The bottom-up computation
- The traceback

The bottom-up computation

- Fill in the best values for each cell of the N*M table starting from the lowest values
- First, compute the basic values of recursion for i=0 and for j=0
- Apply recursion relation for computing the value of each cell from the lowest numbers of i and j to the largest
- At the end, we will have the cost of the best path in the cell (N,M)

Fill values for i=0 and for j=0(the base recursion condition)

There is no cheaper way of going to the point (2,0) than paying 2 \$

Cell(1,2) = 1

since the cheapest possible way is to continue the free path through the cell (1,1)

′S

Dynamic programming III

- The recurrence relation
- The bottom-up computation
- > The traceback

Keeping track of the source

Keeping track of the source

' S

Keeping track of the source

' S

' S

Dynamic programming with electronic tables. Cost

- Build the input table the cost of passing through any cell by diagonal
- Create the distance table, fill the first row and the first column according to the basic recursion
- Insert the recursion formula in cell [1][1]:
 - C19= MIN(B18+C3,B19+1,C18+1)
- Spread the formula to the rest of the table by drag-andrelease
- Read the cost of the cheapest path in cell [N][M] the last cell of the cost table

Dynamic programming with electronic tables. Forward path Excel code

IF(B18+C3<B19+1, IF(B18+C3<C18+1, "DownRight", "Right"), "Down") IF(B18+C3<B19+1)IF(B18+C3<C18+1)C35="DownRight" **ELSE** C35="Right" ELSE C35="Down"

Shows one of the possible paths to obtain the smallest cost for a path from (0,0) to the current cell

Dynamic programming with electronic tables. Backward path **Excel code** C49 =IF(C35 = "Down")IF(C35="Down",C49="Up" "Up", **FI SF** IF(C35 = "Right",IF(C35 = "Right")"Left", C49="Left" "UpLeft")) ELSE <u>C49="UpLeft"</u>

Replacing by the opposite direction – from the destination cell to the source cell

Dynamic programming with electronic tables. Traceback

Excel code

```
B60=
IF(AND(C61="X",C49="UpLeft"),
"X",
IF(AND(C60="X",C48="Left"),
"X",
IF(AND(B61="X",B49="Up"),
"X",
"-")))
```

```
IF( C61="X"AND C49="UpLeft")
B60="X"
ELSE IF( C60="X" AND C48="Left")
B60="X"
ELSE IF( B61="X" AND B49="Up")
B60="X"
ELSE
B60="-"
```

By placing X in the destination cell, this code reconstructs the path which gave the total minimum cost: cell is marked X if the path went through this cell, otherwise it is marked -.

Alternative: write the program (add the traceback and the output of the path)

Input: array *diagonalCost* (*NxM*) allocate array *DPTable* (*NxM*)

algorithm getCheapestCost() fillDPTable() return DPTable [N] [M]

```
algorithm fillDPTable()

DPTable [0][0]:=0

for i from 1 to N:

DPTable [i][0]:=i

for j from 1 to M:

DPTable [0][j]:=j

for i from 1 to N:

for j from 1 to M:

DPtable [i][j]:=min (DPtable [i-1][j-1]+ diagonalCost [i][j],

DPtable [i-1][j]+1, DPtable [i][j-1]+ 1)
```

Complexity of the DP algorithm

2 nested loops: O(NM)

String dissimilarity

Edit Operations

- We can transform the second string S2 into the first string S1 by applying a sequence of edit operations on S2 :
 - Deleting 1 symbol
 - Inserting 1 symbol
 - Replacing 1 symbol

In total, 4 edit operations

String alignment

An *alignment* of 2 strings is obtained by first inserting spaces (gaps), either into or at the end of both strings, and then placing the 2 resulting strings one above the other, so that every character or space in either string is opposite a single character or space in the other string

alignment

-									
S1	а	С	t	-	-	а	t	g	
S2	а	-	t	а	С	а	-	g	4 gaps, no mismatches

Edit distance

The *edit distance* between two strings is defined as the minimum number of edit operations needed to transform one string into another

Optimal alignment

An optimal alignment is obtained from the calculation of the edit distance

The edit distance problem

Compute the edit distance between two strings along with a sequence of the operations which describe the transformation

Analogy with the cheapest path

The dynamic programming solution to the edit distance problem

- Trivially follows from the solution for the cheapest path:
 - If we moved strictly down in the grid, we inserted 1 symbol into S2
 - If we moved strictly to the right, we deleted 1 symbol from S2
 - If we moved by diagonal of cost 0, we matched the corresponding characters
 - If we moved by diagonal of cost 1, we replaced one symbol in S2 with the corresponding symbol in S1