
Searching for a pattern.

Knuth-Morris-Pratt

Lecture 2.

Motivation

“In a very real sense, molecular biology is all

about sequences. It tries to reduce complex

biochemical phenomena to interaction

between defined sequences”
G. Von Heijne. Sequence analysis in molecular biology: treasure

trove or trivial pursuit. Academic press, 1987

Examples

 Finding the overlaps during the sequence

assembly

 Finding STS – Sequence Tagged Sites –

unique sequences used to map the positions

of the fragments in the genome

 Finding EST – Expressed Sequence Tags –

STSs of protein-coding DNA – to locate

genes inside the entire sequenced genome

Useful definitions

 A string S of length N is an ordered list of N elements written
contiguously from left to right

 The elements are called symbols or characters

 S[i…j] is a contiguous substring of S starting at position i and
ending at position j of S

 S[1…j] is a prefix of S starting at position 1 and ending at position
j

 S[i…N] is a suffix of S starting at position i and running till the last
character of S

 S[i…j] is an empty string if i>j

 A proper substring, prefix, suffix of S is respectively a substring,
prefix, suffix that is neither the entire string S nor the empty string

Pattern matching problem

 Given a string P (of length M) called the

pattern and a longer string T (of length N)

called the text, find all occurrences, if any, of

pattern P in text T

Naïve method – time complexity

 Naïve method is to compare the characters of

the pattern starting from each of N positions

of the text

 In the worst case, it requires O(MN) character

comparisons, exactly M(N-M+1), for example,

for T=aaaaaaaaaa (N=10) and P=aaa (M=3)

there are 24 character comparisons

Naïve method – time complexity

 In the worst case, we start from each position i of T (there are N such

positions), and for each such position check, in the worst case, all M

characters of P

 A standard fetching time from sequential RAM is 358 MB values per

second (ref).

 If we have 10 random sets of sequenced fragments from the 3 GB-

length human genome, then we need to search the text of a total size

3*1010, which can be sequentially accessed with approximately 3*108

values per second. We will spend 100 seconds on a linear time

algorithm, but for the worst case we need to multiply it by the value of

M, which can be as large as 800.

 Grep search program (based on a linear-time algorithm), for example,

requires about 2 minutes when searching for a string of length 10 in a 3

GB text (on an average desktop machine).

 We want the pattern search algorithm to perform in a linear time

http://cacm.acm.org/magazines/2009/8/34493-the-pathologies-of-big-data/fulltext

Our dream goal: each character of T is

accessed only once

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

t citci Less than M

characters remain

Is this algorithm correct?

Incorrect algorithm

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

t citci Less than M

characters remain

No, we have missed an occurrence of P starting at position 4

t citci

Knuth-Morris-Pratt (KMP) idea

 When we have aligned the prefix of P with k

characters of T, we know what characters are

in T up to the current position (they are equal

to those of the prefix P[1…k] of P)

 From this information we can deduce the

place where to start the next comparison

KMP intuition

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

We have aligned 6 characters

The next occurrence of a pattern has to start

with tic and we know that the last characters of a

match were tic, since the suffix of P starting at

position 4 is equal to a prefix of P of length 3

KMP intuition

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tt citci

Therefore we can set a start of the next comparison to 3 positions backwards from the current position

(red cell), and we don’t need to compare the first 3 characters of P again, since we know that they

match

Thus, we can continue the comparison from the next character of P (and T)

t citci

KMP intuition – overlap function for P

In order to know where to position the start of the next comparison, we need

to know the values of an overlap function for P, namely:

For each position j in P, the maximal length of a substring which is at the

same time a proper prefix of P and the proper suffix of substring P[1, j].

Before we start the search, we need to compute an overlap function for P –

we need to preprocess pattern P

t citci

654321

citcit

KMP intuition – overlap function for P

For j=1, OF=0 (t is not a proper suffix of a substring t, but the entire t)

t citci

654321

cct

0

KMP intuition – overlap function for P

For j=2, OF=0 (the only proper suffix of ti, the suffix i, does not have any

overlap with the prefix t of ti)

t citci

654321

cct

00

i

i

KMP intuition – overlap function for P

For j=3, OF=0 (suffixes ic, c do not have an overlap)

t citci

654321

cct

000

i

KMP intuition – overlap function for P

For j=4, OF=1 (t is a proper suffix of a substring tict, and the prefix of P)

t citci

654321

cct

1000

i tt

KMP intuition – overlap function for P

For j=5, OF=2 (ti is a proper suffix of a substring ticti, and the prefix of P)

t citci

654321

cct

21000

i tct i

KMP intuition – overlap function for P

For j=6, OF=3 (tic is a proper suffix of a substring tictic, and the prefix of P)

t citci

654321

cct

321000

i

c

i
tct i c

Assume, for now, that the OF values for P are computed

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

Report 1

321000

j=7

Consult OF(6)=3 it tells how many positions backward

from i the next comparison starts: k=i-OF(j-1)

i=7

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

321000 No need to compare these 3 characters, we

know that they match – we just compared them

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

321000

Report 4

Consult OF(6)=3 it tells how many positions backward

from i the next comparison starts: k=i-OF(j)+1

i=10

j=7

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

321000 Continue comparing T[10] and P[4]

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

321000
T[11] and P[5] do not match. Consult OF(4)=1. next potential

match can start at i-OF(j)=10, and the first character is already

matched

j=5

i=11

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

654321

citcit

321000 Here we only matched till the position j=2, the value OF(1)=0,

therefore we are not shifting the start of the comparison backwards

but starting from the next i=12 etc…

j=2

i=11

KMP search

t i c t i c t i c t a c i c a c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

54321

citcit

321000 If T would be larger, we continue in a similar manner,

never accessing the characters of T more than twice

KMP – from an intuition to the algorithm

We need 3 pointers (3 only for

clarity, could work with 2):

•pointer i will point to the

current character of text T of

length N

•pointer j will point to the

current character of pattern P

of length M

•pointer k will point to the start

of a current comparison in T

in the beginning i=1, j=1, k=1

i:=1 j:=1k:=1

KMP - from an intuition to the algorithm

if we have enough symbols in T to

match P starting from position k, then

we continue to compare the

corresponding characters of P and T

i:=1 j:=1 k:=1

while: N-k>=M

KMP - from an intuition to the algorithm

we continue matching symbols of P

while they match or until we reached

the end of P

i:=1 j:=1 k:=1

while: N-k>=M

while: j ≤ M and T[i]=P[j]

i:=i+1

j:=j+1

KMP - from an intuition to the algorithm

If we reached the end of P, we found

our match starting at position k of T
i:=1 j:=1k:=1

while: N-k>=M

while: j ≤ M and T[i]=P[j]

i:=i+1

j:=j+1

if j>M then output k

KMP - from an intuition to the algorithm

Now we need to find where to start the

next comparison

if there was an overlap OL(j-1), then

• set the start of a new comparison

(k) that many steps backwards

from the current position in T as

the value OL(j-1)

• set j to the position OL(j-1)+1 in T

(we know that the previous

characters match)

• i remains unchanged, since now

we are going to compare it with the

symbol at a different position of P

i:=1 j:=1 k:=1

while: N-k>=M

while: j ≤ M and T[i]=P[j]

i:=i+1

j:=j+1

if j>M then output k

if OF(j-1)>0

k:=i-OF(j-1)

j:=OF(j-1)+1

KMP - from an intuition to the algorithm

if the value of an overlap function is

zero (do not need to check backwards),

then

•advance i to the next position

•set start of a comparison k to i

•set j to 1

i:=1 j:=1 k:=1

while: N-k>=M

while: j ≤ M and T[i]=P[j]

i:=i+1

j:=j+1

if j>M then output k

if OF(j-1)>0

k:=i-OF(j-1)

j:=OF(j-1)+1

else

i:=i+1 //only if we did not

advance in T

k:=i

j:=1

KMP - from an intuition to the algorithm

Note that in the if/else clauses:

j=OF(j-1)+1 is the same as

j=1, for OF(j-1)=0

then we can shorten the pseudocode

i:=1 j:=1 k:=1

while: N-k>=M

while: j ≤ M and T[i]=P[j]

i:=i+1

j:=j+1

if j>M then output k

if OF(j-1)>0

k:=i-OF(j-1)

j:=OF(j-1)+1

else

if i=k then

i:=i+1

k:=i

j:=1

KMP – algorithm complete

note that in if/else clauses:

j=OF(j-1)+1 is the same as

j=1, for OF(j-1)=0

then we can shorten the pseudocode

i:=1 j:=1 k:=1

while: N-k>=M

while: j ≤ M and T[i]=P[j]

i:=i+1

j:=j+1

if j>M then output k

j:=OF(j-1)+1

if OF(j-1)>0

k:=i-OF(j-1)

else

if i=k then

i:=i+1

k:=i

KMP – the final pseudocode
algorithm KMP (T of length N, P of length M)

i:=1 j:=1 k:=1

while: N-k>=M

while: j ≤ M and T[i]=P[j]

i:=i+1

j:=j+1

if j>M then output k

j:=OF(j-1)+1

if OF(j-1)>0 then

k:=i-OF(j-1)

else

if i=k then

i:=i+1

k:=i

A KMP code for the 0-base array
(C-code)

while ((N-k)>=M)

{

while(j <M && T[i]==P[j])

{

i++;

j++;

}

if (j==M)

printf ("Occureence at pos %d\n",k);

stepBack=0;

if (j>1)

{

stepBack=OF[j-1];

j=OF[j-1]+1;

}

if (stepBack>0)

k=i-stepBack;

else

{

if(i==k)

i++;

k=i;

}

}

KMP algorithm time complexity

 The number of character comparisons in KMP

algorithm is at most 2N

 Divide the algorithm into compare/shift phases, where a

single phase consists of the comparisons done between 2

successive shifts. During 2 consecutive shifts, at most 2

comparisons are done for each character of T. Since

pattern is never shifted left, the total number of character

comparisons is bounded by N+s, where s is the total

number of shifts. But s<N, since after N shifts the right end

of P is certainly to the right of the right end of T, so the total

number of comparisons done is bounded by 2N

A worst-case example – iterations 1,2

1 1 1 1 1

a a a a b a a a a a

a a a a a

We have aligned pattern P, by performing so far 1 character comparison for

each of 5 characters of P

Now we need to restart the comparison from the position 2 of T

1 1 1 1 2

a a a a b a a a a a

a a a a a

A worst-case example – iteration 3

1 1 1 1 2

a a a a b a a a a a

a a a a a

We have compared character b of T already 2 times

Next we start by aligning pattern starting at position 3 of T

1 1 1 1 3

a a a a b a a a a a

a a a a a

A worst-case example – iteration 4

1 1 1 1 4

a a a a b a a a a a

a a a a a

A worst-case example – iteration 5

1 1 1 1 5

a a a a b a a a a a

a a a a a

For now, we have compared character b of T 5 times (as the length of the

pattern), but during this comparison we have shifted the left end of P 5

positions forward. Since we did not compare anymore any character to

the left from b, we did in total not more than 5*2 comparisons in order to

process the 5 first characters of T.

This is true in general: the total number of character comparisons in KMP

is bounded by 2N

How to compute the OF function

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1

The easy case:

if we have OF(j-1), and the

characters

P[j] and P[OF(j-1)+1] match

Then we just increase by 1

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute the OF function

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1 2

The easy case:

if we have OF(j-1), and the

characters

P[j] and P[OF(j-1)+1] match

Then we just increase

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute the OF function

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3

The easy case:

if we have OF(j-1), and the

characters

P[j] and P[OF(j-1)+1] match

Then we just increase

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute the OF function

t i c t i c t a c

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The easy case:

if we have OF(j-1), and the

characters

P[j] and P[OF(j-1)+1] match

Then we just increase

OF(j)=OF(j-1)+1

t i c t i c t t i

1 2 3 4 5 6 7 8 9

How to compute the OF function

t i c t i c t a c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

If the characters

P[j] and P[OF(j-1)+1] do not

match

where do we find OF[j]?

How to compute the OF function

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

If the characters

P[j] and P[OF(j-1)+1] do not

match

then OF(j) is less than OF(j-1)

We look at v= OF(j-1) and check

again the next character

P[OF(v)+1]

How to compute the OF function

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

If the characters

P[j] and P[OF(j-1)+1] do not

match

we look at v=OF(j-1) and check

again the next character

P[OF(v)+1]

The pointer is bouncing through

the entire OF table until it finds

the symbol matching the current

symbol after the next

assignment of v=OF(v)

How to compute the OF function

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

If the characters

P[j] and P[OF(j-1)+1] do not

match

then OF(j) is less than OF(j-1)

We look at v=OF(j-1) and check

again the next character

The pointer is bouncing through

the entire OF table until it finds

the symbol matching the current

symbol after the next

assignment of v=OF(v)

P[2]≠P[8]

v=OF(4)

How to compute the OF function

t i c t i c t t c

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

The general case:

v=OF(4)

P[1]=P[8], thus

OF(8)=OF(1)+1=1

Why do we compute the OF value this

way?

ββ β

αα

xx y

We know that since we could not extend suffix α, so there is a smaller suffix, β,

which starts somewhere inside α.

What is the next smaller overlap for all suffixes starting inside α?

The same as for all suffixes inside the prefix of length |α|

Thus, if we check the OF value for the position |α|, we see the next smaller maximal

overlap

We check if this is a desired maximal overlap by checking the next character after

the prefix of size |β|

If this character is x, we are done

If not, we continue by the same logic

Example

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

t i c t i c t t

1 2 3 4 5 6 7 8 9

We know that the substring

tictict ending at position 7 had

suffix tict which is overlapping

with the prefix tict of the

pattern

We also know that we cannot

extend this overlap since P[8]

and P[5] do not match

Now we want to check what

overlap had the prefix tict

with the prefix of the entire

pattern, since the suffix start

for a new overlap is

somewhere inside tict

We look at position 4 in OF

table and find that the next

overlap for substring of length

4 is of length 1

Example

t i c t i c t t i

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

0 0 0 1 2 3 4

t i c t i c t t

1 2 3 4 5 6 7 8 9

We check if P[1+1] matches

P[8]

They do not

We repeat and by the same

logic we are going to the

entry 1 of the OF table, and

find that there is no overlap

for this value: OF[1]=0

So we check if

P[0+1] matches P[8]

They do, so the

OF[8]=OF[1]+1=1

A more complex example of the OL computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

?

We know that OL(23)=11

This means that the sequence of the first 11 characters of P is the same as that

of the last 11 characters of P[1….23]

However, the character P[11+1]=r does not match the character P[23+1]=t

A more complex example of the OL computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

?

The maximum possible overlap is less than 11

The next maximum possible overlap can be found if we look at position 11 of the

OF table and see what overlap this substring had

The substring P[1…11] has a maximum overlap of length 5

A more complex example of the OL computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

?

Let us check if this value is also the maximum overlap for the substring P[1…24]

For this we check the character next to P[5], which is p, and it does not match

our t

Therefore, the overlap we are looking for is less than 5

A more complex example of the OL computation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

c a t c a p c a t c a r c a t c a p c a t c a t

O

L

0 0 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 1

0

1

1

3

We check the next possible value by considering the overlap value for the

substring P[1…5]

This value is 2. Is this value of an overlap good for P[1…24]?

We check P[2+1]=t, and P[24]=t

Thus, the overlap for the substring P[1…24] is 2+1=3

Practice jumps on the following pattern

 aaahamaaahamamaaahamaaaa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

Solution step 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

Solution step 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 ?

Solution step 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

a a a h a m a a a h a m a m a a a h a m a a a a

O

L

0 1 2 0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 3

Overlap function - pseudocode
algorithm computeOverlapFunction (pattern P of length M)

OF[1]=0

for k:=1 to M-1

c:=P[k+1] // current character of P

v:=OF[k]

while: P[v+1] ≠ c and v ≠ 0

v:=OF[v]

if P[v+1]=c

OF[k+1]:=v+1

else

OF[k+1]:=0

return OF table

Overlap function: time complexity

The computation of OF is performed in time O(M) since:

• the total complexity is proportional to the total number of times the value of
v is changed

• this value is increasing by one (or remains zero) in the for loop, and in total,
during the entire algorithm, it is increasing not more than by M units

• in addition, the value of v is decreasing inside the while loop, but since v is
never less than zero, the total number of units by which it is decreasing can
not be more than the number it has been increasing, therefore it is bounded
by M too.

The time is therefore less than 2M: O(M)

If we sum up the length of all the red lines (increasing value of v), the result

will be <=M. Therefore, the total length of blue lines (decreasing value of v)

cannot be more than M in total

Overlap function table

 Is called in the modern literature the border

array

Overlap Function - again
1 2 3 4 5 6

a a b a a a

0 1 0 1 2 2OF

Advance in T Compare P[1]

Stay in T Compare P[1]

Stay in T Compare P[2]

Stay in T Compare P[1]

Stay in T Compare P[2]

Stay in T Compare P[3]

Advance in T Compare P[3]

pos OF

1 0

2 1

3 0

4 1

5 2

6 2

The OF values tell where to position the

start of the next comparison

They also tell which character to

compare in P and whether to advance

or not the pointer in T

For example, if mismatch occurred at

pattern position j=5, from OF(5-1)=1 the

start k is 1 position backwards from a

current position i in T, and we compare

the same character in T with the

character OF(5-1)+1=2 in P, since we

know that the first 1 character matches

T starting from k

Finite state automaton

 FSA is a model of behavior composed of a

finite number of states, transitions between

those states, and actions.

 It is similar to a "flow graph" where we can

inspect the way in which the logic runs when

certain conditions are met.

i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

State – comparing

T[i] with A at pos 1

i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

Transition in

case of match

Transition in

case of

mismatch

Action: advance i

0 1 0 1 2 2OF

Where the transition in

case of failure is

directed, is determined

by the value of an

overlap function

That is why OL

function is called also

a failure function

i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

0 1 0 1 2 2OF

i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

0 1 0 1 2 2OF

A

4

i++

i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

0 1 0 1 2 2OF

i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Report

occurren

ce at

pos i-M

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

Report 7-6=1

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

i++ i++ i++ i++ i++ i++ i++

KMP pattern matching automaton
1 2 3 4 5 6

a a b a a a

start
A

1

A

2

B

3

A

4

A

5

A

6

0 1 0 1 2 2OF

Example: streaming text T=aaabaaaaabaaaa through the automaton

Etc…

Automaton for a set of patterns

 The KMP automaton can be build for a set of

patterns

 In this case we are simultaneously finding the

positions of several patterns in T by

streaming T through the automaton

 The automaton for a set of patterns is left as

an exercise for you and may be chosen as a

project (the Aho-Corasick algorithm)

References

 http://en.wikipedia.org/wiki/Knuth-Morris-

Pratt_algorithm

 http://www.ics.uci.edu/~eppstein/161/960227.

html

 Dan Gusfield. Algorithms on strings, trees,

and sequences. Computer science and

computational biology. Cambridge University

press, 1999.

http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://www.ics.uci.edu/~eppstein/161/960227.html
http://www.ics.uci.edu/~eppstein/161/960227.html

