
Character-based (parsimony
based) phylogenies

Lecture 17

Character-based phylogeny
problem

•

Input:
–

a set of N species

–

a set of M characters for each species
–

The input is generally presented as an NxM
matrix C, where each entry Cij represents the
value of character j for species i

–

In addition, the weight matrix may be supplied
to weight the score of transition between
different characters

The parsimony score of the tree.
Intuition

•

The most parsimonous

explanation of a given
phylogeny is the tree with an overall minimum
number of changes along its branches

•

The logic is the basic philosophy of Ockham's
razor –

finding the simplest explanation that

works
•

The score is the total number of times the value
of some character changes along some edge

The parsimony score of the tree.
Definition

•

Let V(T) be a set of vertices and E(T) be a set of
edges of a given phylogenetic

tree, and let the

value of a character j in vertex v be vj.

PScore(T)=Σ(for each v,u

€E(T))

|{j: vj≠uj}|

v: AC

u: AT For this edge, we add 1 to the total
parsimony score of the tree

Pscore

example

C T

C C T T TC

TC

What is Pscore

of this tree?

Pscore

example

C T

C C T T TC

TC

Pscore

=1

or

Character-based phylogeny

•

Small parsimony problem: given a topology of a
rooted phylogenetic

tree and the character

matrix C, find a labeling of ancestral sequences
which implies the minimum parsimony score

•

Large parsimony problem: given the character
matrix C, build the tree with the minimum
parsimony score (minimum number of character
changes along its edges) –

NP-hard

Assumptions

•

The character changes are mutually
independent

•

After 2 species diverged, they continue to
evolve separately

•

Each character split is a 2-way split –
 bifurcating (binary) tree

The Fitch algorithm for the small
parsimony problem

1 2 3

A a a t

B c g c

C c g c

D t g t

Input:

matrix C (multiple alignment)

tree T

Output:

Labeling of ancestral nodes
which minimizes the
parsimony score of the tree

A B DC

The Fitch algorithm. Phase I
1 2 3

A a a t

B c g c

C c g c

D t g t

Compute the sets of all possible
character states for each internal node,
based on the states of its children

Each leaf node contains only 1 state for
each character, and is initially marked
with this character

Perform post-order traversal of the tree
(each node is evaluated only after all its
children have been evaluated) and for
each node v compute the candidate
character set A B DC

The Fitch algorithm. Phase I
1 2 3

A a a t

B c g c

C c g c

D t g t

Phase I.

For each column j of matrix C:

//initialize

for each leaf node v of species i:

Setv

=Cij

A B DC

j=1

a c c t

The Fitch algorithm. Phase I
1 2 3

A a a t

B c g c

C c g c

D t g t

Phase I.

For each column j of matrix C:

//initialize

for each leaf node v:

Setv

=Cij

perform post-order traversal of T

for each internal node v

with children u and w:

if Setu

∩

Setw

≠ Ǿ

Setv =Setu ∩

Setw
else

Setu U Setw

A B DC

j=1

a c c t

ac ct

c

The Fitch algorithm. Phase I intuition

•

If there is a state which fits both children,
we take it as their common ancestor. If
there is no such state (the intersection is
empty), we take as the candidates the sets
of its children, since this is better than
taking any other set which does not occur
in any of the children

The Fitch algorithm phase I example
1 2 3

A a a t
B c g c
C c g c
D t g t

1 2 3

A B C D A B C D A B C D

ac ct

c

ag g

g

tc tc

tc

T1

characters

The Fitch algorithm. Phase II

1 2 3

A a a t

B c g c

C c g c

D t g t

A B DC

j=1

a c c t

ac ct

c

We determine value vj to assign
to each internal node, which we
choose from the candidate set of
characters

We perform pre-order traversal
(each child is evaluated after its
parent has been evaluated)

The Fitch algorithm. Phase II

1 2 3

A a a t

B c g c

C c g c

D t g t

A B DC

j=1

a c c t

ac ct

c

For each character j

perform pre-order traversal of T

for each vertex

v with parent u

if uj € Setv
vj

=uj

else

vj

=any element from Setv

A B DC
a c c t

c c

c

The parsimony
score for the first
character=2

The Fitch algorithm phase II example
1 2 3

A a a t
B c g c
C c g c
D t g t

1 2 3

A B C D A B C D A B C D

ac ct

c

ag g

g

tc tc

tc

1 2 3

A B C D A B C D A B C D

c c

c

g g

g

t t

t

ca c t ga g g ct c t

The total parsimony
score of this tree
with this optimal
labeling is 5

The Fitch algorithm. Time complexity

•

If there are k possible values of a
character, then for a single character we
perform at most 2k operations, and with
2N total nodes in the tree, there is O(Nk)
work for a single character

•

O(NMk) for all M characters

The weighted parsimony. The
algorithm by Sankoff

•

Different, application-specific costs are
assigned for each change of character
from state to state

•

This is more realistic, since substitutions
happen with different probabilities

•

An overall algorithm is similar to the Fitch
algorithm (you can read it in your textbook)

All possible trees need to be evaluated in
order to find the most parsimonous

tree

1 2 3
A a a t
B c g c
C c g c
D t g t

1 2 3 L(T)
?

A C B D A C B D A C B D

Find the most parsimonous

tree for this example: T1, T2 or T3 ?

1 2 3 L(T)
?

A D B C A D B C A D B C

T2

T3

Large Parsimony problem for
4x3 matrix

The large parsimony problem

•

Input: A matrix C describing M characters
for a set of N species

Mij –

state of the j-th

character for species i
Mi –

label of species i. All labels are distinct

Goal: find the most parsimonous

tree:
topology, leaf labeling and labels for
internal nodes

The problem is NP-hard

How many different trees

•

For 2 species (N=2) only 1 possible tree

A B

How many different trees

•

For 3 species (N=3): a new leaf can be
added by splitting any of 2+1 branches

A B A B A BC C C

How many different trees
•

For 4 species (N=4): for each of these 3 trees, a
new leaf can be added by splitting any of 4+1
branches

A B A B A BC C C

1*3*5*…(2N-3) possible trees (2n-3)!! –

exponential number of different trees

Solution for the large parsimony
problem

•

A brute-force solution: enumerate all
possible trees, compute the PScore

of

each tree, and choose the tree with a
minimum score

•

Optimization over the search space:
–

Branch-and-bound

The Branch-and-Bound technique

•

The search is presented as the leaves of the search tree.
Each node in this tree corresponds to some variant of a
possible phylogenetic

tree

•

In order to apply the B&B technique, the score of each
search node should be monotonous, i. e. the score of
each node is >= the score of any of its ancestors

•

In this case, the algorithm guarantees to find the best
tree, but it does not guarantee that the search will be
faster than the exponential time

•

Performs quite good in practice

The Branch-and-Bound technique

•

The search tree is traversed in order, and
the score of the best leaf found so far is
kept as a bound B.

•

Whenever a node is reached with the
score >B, the search tree is pruned at this
node, i.e. its subtree

is not searched, since

it is guaranteed that any leaf in its subtree
 cannot have score <=B

The Branch-and-Bound technique

•

In level k of the tree we have nodes representing
all possible phylogenetic

trees for the first k

species

1 tree for species A,B

Tree 1 for species A,B, C

5 trees for species A,B,C,D

Tree 2 for species A,B, C

Tree 3 for species A,B, C

5 trees for species A,B,C,D

5 trees for species A,B,C,D

Level 1

Level 2

Level 3

The Branch-and-Bound technique
•

There are 2k-1 places to add a new species to an existing tree, thus
each node at level k branches into 2k-1 children.

•

The requirement for monotonicity

is satisfied, since adding a new
node cannot reduce the PScore

of the tree

1 tree for species A,B

Tree 1 for species A,B, C

5 trees for species A,B,C,D

Tree 2 for species A,B, C

Tree 3 for species A,B, C

5 trees for species A,B,C,D

5 trees for species A,B,C,D

Level 1

Level 2

Level 3

The Branch-and-Bound technique
•

The first tree for all N species is determined by finding a local minimum
using one of the optimization techniques. This local minimum in many cases
will be also a global minimum.

•

The PScore

of this tree is used as the bound on the rest of the search
nodes, most of which are pruned and not expanded

1 tree for species A,B

Tree 1 for species A,B, C

5 trees for species A,B,C,D

Tree 2 for species A,B, C

Tree 3 for species A,B, C

5 trees for species A,B,C,D

5 trees for species A,B,C,D

Level 1

Level 2

Level 3

Character compatibility and perfect
phylogeny

•

Compatibility of characters in the perfect phylogeny
problem (see lecture 14) is a special case of parsimony.

•

Reminder: a set of characters is compatible with the tree
iff

there is a labeling of the internal nodes s.t. the total

number of character changes is exactly k-1, where k is
the number of possible states for each character.

•

This was demonstrated on the example of a character
with only 2 states (binary). In this case, if the characters
are compatible, the perfect phylogenetic

tree can be

built, with the parsimony score 1 for each character
(each character changes its state from 0 to 1 only once)

	Character-based (parsimony based) phylogenies
	Character-based phylogeny problem
	The parsimony score of the tree. Intuition
	The parsimony score of the tree. Definition
	Pscore example
	Pscore example
	Character-based phylogeny
	Assumptions
	The Fitch algorithm for the small parsimony problem
	The Fitch algorithm. Phase I
	The Fitch algorithm. Phase I
	The Fitch algorithm. Phase I
	The Fitch algorithm. Phase I intuition
	The Fitch algorithm phase I example
	The Fitch algorithm. Phase II
	The Fitch algorithm. Phase II
	The Fitch algorithm phase II example
	The Fitch algorithm. Time complexity
	The weighted parsimony. The algorithm by Sankoff
	All possible trees need to be evaluated in order to find the most parsimonous tree
	The large parsimony problem
	How many different trees
	How many different trees
	How many different trees
	Solution for the large parsimony problem
	The Branch-and-Bound technique
	The Branch-and-Bound technique
	The Branch-and-Bound technique
	The Branch-and-Bound technique
	The Branch-and-Bound technique
	Character compatibility and perfect phylogeny

