Parsimony and perfect phylogeny Lecture 14

Phylogeny and evolution

- A phylogeny is a tree representation of the evolutionary history of a set of species, biological sequences, populations or languages
- Phylogeny construction is among the basic computational problems in biology and linguistics

Binary attributes

	move (active)	using sun energy	seeds	eggs	milk	swim (active)	fly (active)
Elephant	1	0	0	0	1	0	0
Snake	1	0	0	1	0	0	0
Whale	1	0	0	0	1	1	0
Fern	0	1	0	0	0	0	0
Eagle	1	0	0	1	0	0	1
Sunflower	0	1	1	0	0	0	0

Perfect phylogeny – the character evolved only once

- A very restricted version of phylogeny is called a *perfect* phylogeny
- Many morphological traits evolved independently from different ancestors under the same environmental pressures (wings, fins)
- This is called *homoplasy* and is generally inescapable in real data
- Homoplasy is a poor indicator of evolutionary relationships because similarity does not reflect shared ancestry
- Sets of characters that admit phylogenies without homoplasy are said to be *compatible*
- Phylogenies that avoid homoplasy are called *perfect* and the character compatibility problem is called *the perfect phylogeny problem*

A perfect phylogenetic tree for binary characters

- Let *M* be a binary matrix representing K objects in terms of C characters or traits, which describe the objects. Each character takes one of 2 possible values: 0 or 1, which is recorded in the corresponding cell of M
- Given M for K objects and C characters, *a perfect phylogenetic tree* for M is a rooted directed tree T:
 - with exactly K leaves 1 leaf per object
 - each character labels exactly 1 edge
 - for any object the characters that label the edges along the path from the root to the parent of a corresponding leaf specify all the characters of this object whose value is 1

Parsimony

- In science, *parsimony* is preference for the least complex explanation. This is regarded as good when judging hypotheses.
- Occam's razor also states the "principle of parsimony": *entia non sunt multiplicanda praeter necessitatem*, is the principle that "entities must not be multiplied beyond necessity": the simplest explanation or strategy tends to be the best one
- Under maximum parsimony, the preferred phylogenetic tree is the tree that requires the smallest number of evolutionary changes.

Connection between phylogenetic tree and the parsimony

- The root of the tree represents an ancestral object that has none of the present characters
- Each character changes from the zero state to one state exactly once and never changes back from the 1 state to the zero state: in the tree, any leaf below the node with incoming edge labeled by some character definitely has this character; once acquired, it can not be lost
- If each edge is labeled by each evolutionary event only **once**, the tree has the fewest state changes among all rooted trees for the given set of objects and characters, and thus represents **the most parsimonious tree**

The perfect phylogeny problem:

 Given matrix M, determine whether there is a phylogenetic tree for M and if yes, build it

Pre-processing: reordering the columns

	1	2	3	4	5	6	7			1	5	4	6	2	7	3
Α.	1	0	0	0	1	0	0	Padix sort	Α.	1	1	0	0	0	0	0
В.	1	0	0	1	0	0	0	(decreasing)	В.	1	0	1	0	0	0	0
C.	1	0	0	0	1	1	0	of columns as binary	C.	1	1	0	1	0	0	0
D.	0	1	0	0	0	0	0	numbers	D.	0	0	0	0	1	0	0
E.	1	0	0	1	0	0	1		E.	1	0	1	0	0	1	0
F.	0	1	1	0	0	0	0	/	F.	0	0	0	0	1	0	1

The resulting sets of objects possessing characters:

A={1,5} B={1,4} C={1,5,6} D={2} E={1,4,7} F={2,3}

The resulting sets of characters appear in objects:

 $1=\{A,B,C,E\} = \{A,C\} = \{B,E\} = \{C\} = \{D,F\} = \{E\} = \{F\}$

Testing for perfect phylogeny

The resulting sets of characters appear in objects:

 $1=\{A,B,C,E\} = \{A,C\} = \{B,E\} = \{C\} = \{D,F\} = \{E\} = \{F\}$

• Theorem: matrix M has a perfect phylogenetic tree if and only if any pair of the character sets is either disjoint, or one is a subset of another.

Such sets are called *compatible:* Set 1 ∩ Set 2 € {Ø, Set 1, Set 2}

Theorem: matrix M has a perfect phylogenetic tree if and only if any pair of the character sets is compatible

Proof I: If there is a phylogenetic tree T, then any two character sets are compatible

- Let ei be the edge of T where character i changes from 0 to 1, and let ej be the similar edge for character j. All the objects that possess character i (or j) are found below these edges. Since in the phylogenetic tree each character labels only 1 edge, there are only
- 4 cases of possible relative topology of ei and ej:
 - (1) ei=ej the same edge for both characters
 - (2,3) ei is on the path from the root to ej (or vice versa)
 - (4) ei and ej are in separate subtrees (disjoint sets)

Theorem: matrix M has a perfect phylogenetic tree if and only if any pair of the character sets is compatible

Proof II: If any two character sets are compatible, then there is a phylogenetic tree T

- Consider objects B and E, and let k be the largest character (the rightmost in M) that they both possess
- We need to proof that if B possesses character i<k, then E also possesses this character, in order to have a perfect phylogenetic tree
- Since Set i ∩ Set j already has common character k (through object B), then Set i ∩ Set j ≠Ø, and hence Set i is contained in Set j (or vice versa). Therefore, the character i of object E must also be in state 1, and the perfect phylogenetic tree can be constructed

Construction in time O(NM)

The resulting sets of objects possessing characters in the sorted matrix m:

A={1,5} B={1,4} C={1,5,6} D={2} E={1,4,7} F={2,3}

- Consider each column of M as a binary number. Using radix sort, sort these numbers in nonincreasing order
- 2. Represent each object in a sorted matrix M as a sequence of characters which have state 1
- 3. Consider each object as a string consisting from this sequence plus sentinel (\$)
- Build the keyword tree for all obtained strings. Remove sentinel – obtain a perfect phylogenetic tree

Perfect phylogeny – demo 1

	1	2	3	4	5	6	7			1	5	4	6	2	7	3
Α.	1	0	0	0	1	0	0	Padix cort	А.	1	1	0	0	0	0	0
В.	1	0	0	1	0	0	0	(decreasing)	В.	1	0	1	0	0	0	0
C.	1	0	0	0	1	1	0	of columns as binary	C.	1	1	0	1	0	0	0
D.	0	1	0	0	0	0	0	numbers	D.	0	0	0	0	1	0	0
E.	1	0	0	1	0	0	1		E.	1	0	1	0	0	1	0
F.	0	1	1	0	0	0	0	/	F.	0	0	0	0	1	0	1

The resulting sets of objects possessing characters:

A={1,5} B={1,4} C={1,5,6} D={2} E={1,4,7} F={2,3}

The resulting sets of characters appearing in objects:

 $1=\{A,B,C,E\} = \{A,C\} = \{B,E\} = \{C\} = \{D,F\} = \{E\} = \{F\}$

Perfect phylogeny – demo 2

	1	5	4	6	2	7	3
Α.	1	1	0	0	0	0	0
В.	1	0	1	0	0	0	0
C.	1	1	0	1	0	0	0
D.	0	0	0	0	1	0	0
E.	1	0	1	0	0	1	0
F.	0	0	0	0	1	0	1

The resulting sets of objects possessing characters:

A={1,5} B={1,4} C={1,5,6} D={2} E={1,4,7} F={2,3}

Perfect phylogeny – demo 3

	1	5	4	6	2	7	3
Α.	1	1	0	0	0	0	0
В.	1	0	1	0	0	0	0
C.	1	1	0	1	0	0	0
D.	0	0	0	0	1	0	0
E.	1	0	1	0	0	1	0
F.	0	0	0	0	1	0	1

The resulting strings with sentinel:

- A=1 5 \$
- B=1 4 \$
- C=1 5 6 \$
- D=2 \$
- E=147\$
- F=23\$

The keyword tree for each string

The source of a binary data

- Morphological traits not a good choice, since a lot of homoplasy – convergent evolution – the same morphological character is acquired more than once and not from the common ancestor
- Biosequences substrings, special patterns, gaps – better in non-coding regions, since the coding regions do not evolve much with time

Perfect phylogeny for insertions

- KPCVCP____VLRQAAH___QQLYQGQIQGPRQVRRAFRVA D:
- KPCVCP VLRQAAHLVQQLYQGQ RQVRRLF AA **ह**:

	Ins 1	Ins 2	Ins 3	Ins 4
А	1	1	0	0
В	0	0	1	0
С	1	1	0	0
D	0	0	1	1
E	0	1	0	0

Exercise:

- Is there a tree?
- If yes, build one