Parsimony and perfect phylogeny

Lecture 14

Phylogeny and evolution

- A phylogeny is a tree representation of the evolutionary history of a set of species, biological sequences, populations or languages
- Phylogeny construction is among the basic computational problems in biology and linguistics

Binary attributes

	move (active)	using sun energy	seeds	eggs	milk	swim (active)	fly (active)
Elephant	1	0	0	0	1	0	0
Snake	1	0	0	1	0	0	0
Whale	1	0	0	0	1	1	0
Fern	0	1	0	0	0	0	0
Eagle	1	0	0	1	0	0	1
Sunflower	0	1	1	0	0	0	0

Perfect phylogeny - the character evolved only once

- A very restricted version of phylogeny is called a perfect phylogeny
- Many morphological traits evolved independently from different ancestors under the same environmental pressures (wings, fins)
- This is called homoplasy and is generally inescapable in real data
- Homoplasy is a poor indicator of evolutionary relationships because similarity does not reflect shared ancestry
- Sets of characters that admit phylogenies without homoplasy are said to be compatible
- Phylogenies that avoid homoplasy are called perfect and the character compatibility problem is called the perfect phylogeny problem

A perfect phylogenetic tree for binary characters

- Let M be a binary matrix representing K objects in terms of C characters or traits, which describe the objects. Each character takes one of 2 possible values: 0 or 1 , which is recorded in the corresponding cell of M
- Given M for K objects and C characters, a perfect phylogenetic tree for M is a rooted directed tree T :
- with exactly K leaves -1 leaf per object
- each character labels exactly 1 edge
- for any object the characters that label the edges along the path from the root to the parent of a corresponding leaf specify all the characters of this object whose value is 1

Parsimony

- In science, parsimony is preference for the least complex explanation. This is regarded as good when judging hypotheses.
- Occam's razor also states the "principle of parsimony": entia non sunt multiplicanda praeter necessitatem, is the principle that "entities must not be multiplied beyond necessity": the simplest explanation or strategy tends to be the best one
- Under maximum parsimony, the preferred phylogenetic tree is the tree that requires the smallest number of evolutionary changes.

Connection between phylogenetic tree and the parsimony

- The root of the tree represents an ancestral object that has none of the present characters
- Each character changes from the zero state to one state exactly once and never changes back from the 1 state to the zero state: in the tree, any leaf below the node with incoming edge labeled by some character definitely has this character; once acquired, it can not be lost
- If each edge is labeled by each evolutionary event only once, the tree has the fewest state changes among all rooted trees for the given set of objects and
 characters, and thus represents the most parsimonious tree

The perfect phylogeny problem:

- Given matrix M, determine whether there is a phylogenetic tree for M and if yes, build it

Pre-processing: reordering the columns

	1	2	3	4	5	6	7
A.	1	0	0	0	1	0	0
B.	1	0	0	1	0	0	0
C.	1	0	0	0	1	1	0
D.	0	1	0	0	0	0	0
E.	1	0	0	1	0	0	1
F.	0	1	1	0	0	0	0

	1	5	4	6	2	7	3
A.	1	1	0	0	0	0	0
B.	1	0	1	0	0	0	0
C.	1	1	0	1	0	0	0
D.	0	0	0	0	1	0	0
E.	1	0	1	0	0	1	0
F.	0	0	0	0	1	0	1

The resulting sets of objects possessing characters:
$A=\{1,5\} \quad B=\{1,4\} \quad C=\{1,5,6\} \quad D=\{2\} \quad E=\{1,4,7\} \quad F=\{2,3\}$
The resulting sets of characters appear in objects:
$1=\{A, B, C, E\} 5=\{A, C\} 4=\{B, E\} 6=\{C\} 2=\{D, F\} 7=\{E\} 3=\{F\}$

Testing for perfect phylogeny

> The resulting sets of characters appear in objects:
> $1=\{A, B, C, E\} 5=\{A, C\} 4=\{B, E\} 6=\{C\} 2=\{D, F\} 7=\{E\} 3=\{F\}$

- Theorem: matrix M has a perfect phylogenetic tree if and only if any pair of the character sets is either disjoint, or one is a subset of another.
Such sets are called compatible: Set $1 \cap$ Set 2 $€\{\check{\text { ® }}$, Set 1 , Set 2$\}$

Theorem: matrix M has a perfect phylogenetic tree if and only if any pair of the character sets is compatible

Proof I: If there is a phylogenetic tree T, then any two character sets are compatible

- Let ei be the edge of T where character i changes from 0 to 1 , and let ej be the similar edge for character j . All the objects that possess character i (or j) are found below these edges. Since in the phylogenetic tree each character labels only 1 edge, there are only
- 4 cases of possible relative topology of ei and ej:
- (1) ei=ej - the same edge for both characters
- $(2,3)$ ei is on the path from the root to ej (or vice versa)
- (4) ei and ej are in separate subtrees (disjoint sets)

Theorem: matrix M has a perfect phylogenetic tree if and only if any pair of the character sets is compatible

Proof II: If any two character sets are compatible, then there is a phylogenetic tree T

- Consider objects B and E, and let k be the largest character (the rightmost in M) that they both possess
- We need to proof that if B possesses character $\mathrm{i}<\mathrm{k}$, then E also possesses this character, in order to have a perfect phylogenetic tree
- Since Set i \cap Set j already has common character k (through object B), then Set i \cap Set $j \neq \varnothing$, and hence Set i is contained in Set j (or vice versa). Therefore, the character i of object E must also be in state 1, and the perfect phylogenetic tree can be

	1	2	3	4
A.	1	1	0	0
B.	1	0	1	0
C.	1	1	0	1
D.	0	0	0	0
E.	1	0	1	0

Construction in time O(NM)

The resulting sets of objects possessing characters in the sorted matrix m :
$A=\{1,5\} \quad B=\{1,4\} \quad C=\{1,5,6\} \quad D=\{2\} \quad E=\{1,4,7\} \quad \mathrm{F}=\{2,3\}$

1. Consider each column of M as a binary number. Using radix sort, sort these numbers in nonincreasing order
2. Represent each object in a sorted matrix M as a sequence of characters which have state 1
3. Consider each object as a string consisting from this sequence plus sentinel (\$)
4. Build the keyword tree for all obtained strings. Remove sentinel - obtain a perfect phylogenetic tree

Perfect phylogeny - demo 1

	1	2	3	4	5	6	7
A.	1	0	0	0	1	0	0
B.	1	0	0	1	0	0	0
C.	1	0	0	0	1	1	0
D.	0	1	0	0	0	0	0
E.	1	0	0	1	0	0	1
F.	0	1	1	0	0	0	0

	1	5	4	6	2	7	3
A.	1	1	0	0	0	0	0
B.	1	0	1	0	0	0	0
C.	1	1	0	1	0	0	0
D.	0	0	0	0	1	0	0
E.	1	0	1	0	0	1	0
F.	0	0	0	0	1	0	1

The resulting sets of objects possessing characters:
$A=\{1,5\} \quad B=\{1,4\} \quad C=\{1,5,6\} \quad D=\{2\} \quad E=\{1,4,7\} \quad F=\{2,3\}$
The resulting sets of characters appearing in objects:
$1=\{A, B, C, E\} 5=\{A, C\} 4=\{B, E\} 6=\{C\} 2=\{D, F\} 7=\{E\} 3=\{F\}$

Perfect phylogeny - demo 2

	1	5	4	6	2	7	3
A.	1	1	0	0	0	0	0
B.	1	0	1	0	0	0	0
C.	1	1	0	1	0	0	0
D.	0	0	0	0	1	0	0
E.	1	0	1	0	0	1	0
F.	0	0	0	0	1	0	1

The resulting sets of objects possessing characters:
$A=\{1,5\} \quad B=\{1,4\} \quad C=\{1,5,6\} \quad D=\{2\} \quad E=\{1,4,7\} \quad F=\{2,3\}$

Perfect phylogeny - demo 3

	1	5	4	6	2	7	3
A.	1	1	0	0	0	0	0
B.	1	0	1	0	0	0	0
C.	1	1	0	1	0	0	0
D.	0	0	0	0	1	0	0
E.	1	0	1	0	0	1	0
F.	0	0	0	0	1	0	1

The resulting strings with sentinel:
$\mathrm{A}=15$ \$
$B=14$ \$
C=156\$
D=2 \$
$\mathrm{E}=147$ \$
$\mathrm{F}=23$ \$

Perfect phylogeny - demo 4

The resulting strings with sentinel:

A=15\$
$B=14$ \$
C=156\$
D=2 \$
E=147\$
$\mathrm{F}=23$ \$

The keyword tree for each string

Perfect phylogeny - tree

The resulting strings with sentinel:

A=15\$
$B=14$ \$
C=156\$
D=2 \$
$\mathrm{E}=147$ \$
$\mathrm{F}=23 \$$

Our first phylogenetic tree

move 1	photo synthe sis 2	seeds 3	eggs 4	milk 5	swim 6	fly 7

A. Elephant
B. Snake
C. Whale
D. Fern
E. Eagle
F. Sunflower

The source of a binary data

- Morphological traits - not a good choice, since a lot of homoplasy - convergent evolution - the same morphological character is acquired more than once and not from the common ancestor
- Biosequences - substrings, special patterns, gaps - better in non-coding regions, since the coding regions do not evolve much with time

Perfect phylogeny for insertions

Ins1 Ins2 Ins3 Ins4

A: RPCVCPKQAVLRQAAQLAQVLQRQI \qquad QQLRRL AA B: RPCACP___VLRQVVQ__QALQRQIIQGPQQLRRL__AA C: KPCLCPKQAAVKQAAHLVQQLYQGQ \qquad KQVRRA__LL D: KPCVCP___VLRQAAH__QQLYQGQIQGPRQVRRAFRVA E: KPCVCP___VLRQAAHLVQQLYQGQ RQVRRLF_AA

	Ins 1	Ins 2	Ins 3	Ins 4
A	1	1	0	0
B	0	0	1	0
C	1	1	0	0
D	0	0	1	1
E	0	1	0	0

Exercise:

- Is there a tree?
- If yes, build one

