
Markov Models

Lecture 10



The honest and the dishonest 
casino 

1/6 1/10

1/2



We can use the conditional 
probabilities for discrimination

We can just compare P(M and model L) and P(M and model F)



We can use the conditional 
probabilities for discrimination

P(M and model L)=0.5*0.5*0.5*0.1*0.5*0.1=0.000625

How confident we are that this sequence was produced by a loaded

 

die? 

P(M and model L)/ P(M and model F)=25.89

Or log [P(M and model L)/ P(M and model F)]=1.4

F L
1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50
P(M and model F)=0.17*0.17*0.17*0.17*0.17*0.17=0.000024

OR



The occasionally dishonest casino 

P=1/6 P=1/10

P=1/2

P=1/6

P=3/5



Sequence generated by a model of 
an occasionally dishonest casino



Markov chains
A general model of a system which moves from 
state to state with some probability aij, called a 
transition probability 
While in a particular state, system emits a symbol 
mk from a finite alphabet with the probability ei(mk), 
called an emission probability of symbol mk in state 
Wi
If we construct the schedule of observation times 
and at each point in time record the symbols emitted 
by a system along with the state, we obtain 2 
sequences: the sequence of emitted symbols which 
is called an observed sequence M, and the 
sequence of states which is called a path through 
system states 



Markov chain terminology 

P=1/6 P=1/10

P=1/2

P=1/6

P=3/5

P=5/6 P=2/5

Transition probabilities



Markov chain terminology 

P=1/6 P=1/10

P=1/2

P=1/6

P=3/5

P=5/6 P=2/5

Emission probabilities



Markov model diagram
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Markov model parameters

F L
F 0.83 0.17
L 0.60 0.40

F L
1 0.17 0.10
2 0.17 0.10
3 0.17 0.10
4 0.17 0.10
5 0.17 0.10
6 0.17 0.50

The transition matrix

Emission probabilities



Hidden Markov Model (HMM)

States are unknown (hidden)



Questions to HMM 
Given a sequence of observations, what is 
the most probable sequence of the 
underlying states (Most probable path)
Given a sequence of N observations, what is 
the probability of obtaining this sequence 
given a model described by a particular HMM 
(Sequence probability)
Given a sequence of N observations, what is 
the probability that the i-th observation was 
produced when the system was in state Wj



The probability that the sequence was 
generated given a particular path

Pick the path π
The probability P(M| π) is the conditional 
probability that sequence M was generated 
while system was moving from state to state 
according to π



Pick a path π
Calculate a joint probability of π and M

Repeat for each possible path and choose a 
path which maximizes 
P(π

 
and M). Total 2N

 

calculations

The probability that the sequence M 
was generated following a path π

F L
F 0.83 0.17
L 0.60 0.40

F L
1 0.17 0.10
2 0.17 0.10
3 0.17 0.10
4 0.17 0.10
5 0.17 0.10
6 0.17 0.50

P(M and π)=0.17 * 0.83*0.17 * 0.17*0.50 * 0.60*0.50=0.0006

A suggested path



Viterbi
 

algorithm for 
the most probable 

path

Dynamic programming



Dynamic programming. Initialization –
 the probability of choosing a die for 

the first time
Add to the system a start state and parameters – the probabilities of 
choosing a fair or a loaded die in the beginning of a game
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Dynamic programming. 
Initialization

Start

The graph of a process. 

P(πF,1

 

)=a0F

 

*eF

 

(M[1]),  P(πL,1

 

)=a0L

 

*eL

 

(M[1])



Dynamic programming. 
Recursion

Start

The graph of a process. We are looking for a path which maximizes the 
probability of emission M



Dynamic programming. 
Recursion

Start

If we know the best paths ending at states L and F in position 4, we can 
choose max between them and terminate the program 

End

Choose max 
(cost (NF

 

), 
cost (NL

 

))



Dynamic programming. Recursion

Start

This can be repeated for each combination of a position in a sequence of 
observations and one of 2 states

End

P(πF,i+1

 

)=max {  P(πF,i

 

)*aFF

 

,   P(πL,I

 

)*aLF

 

}* eF

 

(M[i+1])

P(πL,i+1

 

)=max {P(πL,i

 

)*aLL

 

, P(πF,i

 

)*aFL

 

} * eL

 

(M[i+1])

P(π*)=max {P(πF,N

 

), P(πL,N

 

)}

Note: the probabilities are multiplied, not added up



Viterbi
 

algorithm. Demo 1

Start End

We have reached position i=1 with the probability 0.9*0.17 of 
going to the F state and emitting 3, and with probability 
0.1*0.10 of going to the L-state and emitting 3. There are no 
other possibilities

0.15

0.01

F L
F 0.83 0.17
L 0.60 0.40
0 0.90 0.10

F L
1 0.17 0.10
2 0.17 0.10
3 0.17 0.10
4 0.17 0.10
5 0.17 0.10
6 0.17 0.50



Viterbi
 

algorithm. Demo 2

Start End

We can reach position i=2 (F-state) with the probability 
0.15*0.83*0.17 or with probability 0.01*0.6*0.10. We chose the max 
between these two: 0.15*0.83*0.17=0.002

The L-state in position i=2 can be reached with probability 
0.01*0.40*0.10 or 0.15*0.17*0.10=0.0026. The second is larger so

 
we choose it.

0.15

0.01

0.02

0.0026

F L
F 0.83 0.17
L 0.60 0.40
0 0.90 0.10

F L
1 0.17 0.10
2 0.17 0.10
3 0.17 0.10
4 0.17 0.10
5 0.17 0.10
6 0.17 0.50



Viterbi
 

algorithm. Demo 3

Start End

We can reach position i=3 (F-state) with the probability 
0.02*0.83*0.17=0.0028 or with probability 
0.0026*0.4*0.17=0.00018. We chose the max between these 
two: 0.02*0.83*0.17=0.0028 

The L-state in position i=3 can be reached with probability 
0.02*0.17*0.50=0.0017 or 0. 0026*0.4*0.5=0.0017. We chose the 
second -

 

arbitrarily

0.02

0.0026

0.0028

0.0017

F L
F 0.83 0.17
L 0.60 0.40
0 0.90 0.10

F L
1 0.17 0.10
2 0.17 0.10
3 0.17 0.10
4 0.17 0.10
5 0.17 0.10
6 0.17 0.50



Viterbi
 

algorithm. Demo 4

Start End

We can reach position i=4 (F-state) with the probability 
0.0028*0.83*0.17=0.0004 or with probability 
0.0017*0.6*0.17=0.00017. We chose the max between these two: 
0.0028*0.83*0.17=0.0004 

The L-state in position i=4 can be reached with probability 
0.0017*0.40*0.50=0.00034 or 0.0028*0.17*0.5 =0.00024. We 
chose the max: 0.0017*0.40*0.50=0.00034

0.0028

0.0017

0.0004

0.0003

F L
F 0.83 0.17
L 0.60 0.40
0 0.90 0.10

F L
1 0.17 0.10
2 0.17 0.10
3 0.17 0.10
4 0.17 0.10
5 0.17 0.10
6 0.17 0.50



Viterbi
 

algorithm. Demo -
 

end

Start End

F L
F 0.83 0.17
L 0.60 0.40
0 0.90 0.10

F L
1 0.17 0.10
2 0.17 0.10
3 0.17 0.10
4 0.17 0.10
5 0.17 0.10
6 0.17 0.50

Choose max: 0.0004. So, the most probable sequence of states:

FFFF

Evidently, it is not enough to have 2 sixes in a row in order to

 

be able to spot the 
loaded die.

0.0004

0.0003



Viterbi
 

algorithm. Log-values
P(πF,1

 

)=a0F

 

*eF

 

(M[1])

 

P(πL,1

 

)= a0L

 

*eL

 

(M[1])

P(πF,i+1

 

)=max {  P(πF,i

 

)*aFF

 

,   P(πL,I

 

)*aLF

 

}* eF

 

(M[i+1])

P(πL,i+1

 

)=max {P(πL,i

 

)*aLL

 

, P(πF,i

 

)*aFL

 

} *eL

 

(M[i+1])

P(π*)=max {P(πF,N

 

), P(πL,N

 

)}

In order to avoid the underflow errors, in practice 
log is used instead of the actual probabilities

P(πF,1

 

)=log a0F

 

+ log eF

 

(M[1])

 

P(πL,1

 

)= log a0L

 

+ log eL

 

(M[1])

P(πF,i+1

 

)=max {P(πF,i

 

)+ log aFF

 

, P(πL,I

 

)+ log aLF

 

}+ log eF

 

(M[i+1])

P(πL,i+1

 

)=max {P(πL,i

 

)+ log aLL

 

, P(πF,i

 

)+ log aFL

 

} + log eL

 

(M[i+1])

P(π*)=max {P(πF,N

 

), P(πL,N

 

)}



Viterbi
 

algorithm. Log-values
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)}

In order to avoid the underflow errors, in practice 
log is used instead of the actual probabilities

P(πF,1

 

)=log a0F

 

+ log eF

 

(M[1])

 

P(πL,1

 

)= log a0L

 

+ log eL
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(M[i+1])

P(πL,i+1

 

)=max {P(πL,i
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How good is the prediction

delay

Missing 
short 
stretches

Overall, an underlying hidden pathway explains the given 
sequence well –

 

the model is good



Exercise 1. Markov models

In Vancouver, if it rains today, then it rains 
tomorrow 3 times out of 5. If it is sunny today, 
it is also sunny tomorrow 1 time out of 3. 
Build a Markov model for the weather in 
Vancouver.



Exercise 2. Discrimination by 
probability

Markov models for the honest and for the dishonest casino are 
presented below:

e(Heads)=1/2

e(Tails)=1/2

e(Heads)=3/4

e(Tails)=1/4

Fair coin Biased coin

Find out what of the coins has more probably 
produced the following sequence of observations

HHHTTHT



Exercise 2. When the coin is 
biased 

For sequence M of length N with k heads:
P(M I fair coin)=Πn(1/2)=1/2N

P (M | biased coin)= Πk(3/4) *ΠN-k(1/4)=3k/4k*1/4N-k

For this simple model, we can find when
P(M I fair coin)< P (M | biased coin)
1/2N<3k/4N

2N<3K
Nlog2

 

2<klog2

 

3
K>(log2

 

2/log2

 

3) N
K>0.63 N 



Exercise 3. 
Using the Viterbi algorithm, find the most probable 
path of states for the following sequence given the 
HMM which produced this sequence. 

e(Heads)=1/2

e(Tails)=1/2

e(Heads)=3/4

e(Tails)=1/4

Fair coin Biased coin

S1/5 4/5

Observed sequence: HTTHHH

3/4

1/4 1/2

1/2



We can answer 2 questions

What is the probability that a given sequence 
of observations came from a particular 
Markov model
Where in the sequence the model has 
probably changed 



CpG
 

islands
C nucleotide followed by G is easily 
methylated
Methylated C easily becomes T 
The methylation is suppressed in important 
regulatory regions – around promoters 
(starting sites of transcription)
Thus, an overall low frequency of CG di-
nucleotide is significantly increased in the 
gene promoter regions  



Biological questions

Given a short stretch of DNA sequence, how 
can we determine whether it came from a 
CpG island or not
Given a lon un-annotated DNA sequence, 
find CpG islands in it



Markov model for DNA 
sequence

Usually, the end of sequence is not modelled in 
Markov chain – sequence can end anywhere



Transition probability estimation 
from real DNA sequences

From 48 CpG islands of a 
total length 60,000 
nucleotides, and from a 
regular DNA stretches, the 
transition probabilities for 
each pair of nucleotides 
were estimated (expected 
0.25 if at random)

+ A C G T

A 0.18 0.27 0.43 0.12

C 0.17 0.37 0.27 0.19

G 0.16 0.34 0.38 0.12

T 0.08 0.36 0.38 0.18

- A C G T
A 0.30 0.20 0.29 0.21
C 0.32 0.30 0.08 0.30
G 0.25 0.25 0.30 0.20
T 0.18 0.24 0.29 0.29

afrom,to

 

=countfrom,to

 

/Σx

 

countfrom,x



Am I in the CpG
 

island?
To use these (+) and (-) models for discrimination for a given sequence we 
calculate the log-odds ratio:

Score(M)=log [ P(M|given
 

model +)/P(M|given
 

model -)]

If this value is positive, we are in the CpG

 

island, if not, we are not

Test on another set of labeled DNA sequences



Finding CpG
 

islands -
 

HMM

The relabeling is the critical step. The essential difference 
between a Markov chain and an HMM is that for HMM there is no 
1-to-1 correspondence between the states and the symbols
By looking at a single symbol, there is no way to tell whether it 
came from state C+ or C-



The most probable path through 
the sequence of states

The most probable path for sequence CGCG

When we apply the Viterbi

 

algorithm to a long un-annotated DNA 
sequence, the states will switch between + and -, giving suggested 
boundaries for CpG

 

islands



Defining the model for HMM

2 parts:
Model topology: what states there are and how 
are they connected
The assignment of parameter values: the 
transition and emission probabilities



Parameter estimation

We are given a set of training sequences
2 cases:

When the states in the training sequences are known

afrom,to=countfrom,to/Σxcountfrom,x

estate i(symbol j)=countstate i(symbol j)/Σy(symbol y)
When the states are unknown

Viterbi training



Parameter estimation when the 
states are known -

 
example

X 1 2 6 6 1 1 2

π F L F F L L L

aF,L

 

=2/3

aF,F

 

=1/3

aL,F

 

=1/3

aL,L

 

=2/3

eF

 

(3)=0 ?

To avoid this, use pseudocounts

eF

 

(1)=(1+1)/(3+6), 1 is a pseudocount, 6 
is the number of different symbols

eF(1)=2/9

eF

 

(2)=1/(3+6)=1/9

eF

 

(3)=1/(3+6)=1/9

eF

 

(4)=1/(3+6)=1/9

eF

 

(5)=1/(3+6)=1/9

eF

 

(6)=(2+1)/(3+6)=3/9

aF,L

 

=2+1/3+2=3/5

aF,F

 

=1+1/3+2=2/5

aL,F

 

=1+1/3+2=2/5

aL,L

 

=2+1/3+2=3/5

Or with pseudocounts



Viterbi
 

training for parameter 
estimation

Pick a set of random parameters
Find the most probable path of states according to 
this set of parameters
This path partitions the sequences into partitions 
according to the states
Calculate new set of parameters, now from the 
known states
Repeat – find the most probable path with the new 
parameters etc. – until the path does not change 
anymore



Viterbi
 

training
The assignment of paths is a discrete process, thus 
the algorithm converges precisely.
When there is no path change, the parameters will 
not change either, because they are determined 
completely by the paths
The algorithm maximizes the probability P(observed
data| Θ, π*)
and not P(observed

 
data | Θ) which we ideally want



Parameter estimation –
 illustration 1

eF

 

(1)=0.17     0.19

eF

 

(2)=0.17     0.19

eF

 

(3)=0.17     0.23

eF

 

(4)=0.17     0.08

eF

 

(5)=0.17     0.23

eF

 

(6)=0.17     0.08

eL

 

(1)=0.10     0.07

eL

 

(2)=0.10     0.10

eL

 

(3)=0.10     0.10

eL

 

(4)=0.10     0.17

eL

 

(5)=0.10     0.05

eL

 

(6)=0.50     0.52

FAIR LOADED

aFF

 

=0.95 0.73 aLL

 

=0.9 0.71

aFL

 

=0.05  0.27

aLF

 

=0.1  0.29

The parameters estimated from 300 random rolls and an iterative 
process started from randomly selected parameters



Parameter estimation –
 illustration 2

eF

 

(1)=0.17     0.17

eF

 

(2)=0.17     0.19

eF

 

(3)=0.17     0.17

eF

 

(4)=0.17     0.17

eF

 

(5)=0.17     0.17

eF

 

(6)=0.17     0.15

eL

 

(1)=0.10     0.10

eL

 

(2)=0.10     0.11

eL

 

(3)=0.10     0.10

eL

 

(4)=0.10     0.11

eL

 

(5)=0.10     0.10

eL

 

(6)=0.50     0.48

FAIR LOADED

aFF

 

=0.95 0.93 aLL

 

=0.9 0.88

aFL

 

=0.05  0.07

aLF

 

=0.1  0.12

The parameters estimated from 30 000 random rolls and an 
iterative process started from randomly selected parameters
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