Markov Models

Lecture 10




The honest and the dishonest

casino
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We can use the conditional
probabilities for discrimination °
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We can just compare P(M and model L) and P(M and model F)




We can use the conditional
probabilities for discrimination
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P(M and model L)=0.5*0.5*0.5*0.1*0.5*0.1=0.000625

0.17

0.50

P(M and model F)=0.17*0.17*0.17*0.17*0.1770.17=0.000024

How confident we are that this sequence was produced by a loaded die?

P(M and model L)/ P(M and model F)=25.89
Or log [P(M and model L)/ P(M and model F)]=1.4
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The occasionally dishonest casino
P=1/6
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Sequence generated by a model of
an occasionally dishonest casino |°
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Markov chains

e A general model of a system which moves from
state to state with some probability a;, called a
transition probability

e While in a particular state, system emits a symbol
m, from a finite alphabet with the probability e,(m,),
caﬁled an emission probability of symbol m, in state
W.

e If we construct the schedule of observation times
and at each point in time record the symbols emitted
by a system along with the state, we obtain 2
sequences: the sequence of emitted symbols which
Is called an observed sequence M, and the
sequence of states which is called a path through
system states




Markov chain terminology 43
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Markov chain terminology oo
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Emission probabilities
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Markov model diagram

a.-=0.83

State F (fair die)

e:(1)=0.17
er(2)=0.17
ex(3)=0.17
ec(4)=0.17
er(5)=0.17

ec(6)=0.17

ag =0.17

a =0.40

a, -=0.60

e (1)=0.10
e (2)=0.10
e (3)=0.10
e (4)=0.10
e (5)=0.10

e,(6)=0.50

State L (loaded die)




Markov model parameters

The transition matrix

Emission probabilities
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Hidden Markov Model (HMM)

e States are unknown (hidden)



Questions to HMM

e Given a sequence of observations, what is
the most probable sequence of the
underlying states (Most probable path)

e Given a sequence of N observations, what is
the probability of obtaining this sequence
given a model described by a particular HMM
(Sequence probability)

e Given a sequence of N observations, what is
the probability that the i-th observation was
produced when the system was in state W



The probability that the sequence was
generated given a particular path

e Pick the path mr

e The probability P(M| 1) is the conditional
probability that sequence M was generated
while system was moving from state to state
according to
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The probability that the sequence M °°
was generated following a path Tr
e Pick apath F L
e Calculate a joint probability of m and M 1 0.17 10.10
2 0.17 |0.10
3 0.17 |0.10
° e o/ |0 o 4 0.17 |0.10
o o e o o o
P e o/ |0 o 5 0.17 [0.10
6 0.17 |0.50
A suggested path - 1
F 0.83 |0.17

P(M and )=0.17 * 0.83*0.17 * 0.17*0.50 * 0.60*0.50=0.0006 | [L  |0.60 |0.40

e Repeat for each possible path and choose a
path which maximizes

P(1r and M). Total 2N calculations



Viterbi algorithm for
the most probable
path

Dynamic programming




Dynamic programming. Initialization —

the probability of choosing a die for

the first time

e Add to the system a start state and parameters — the probabilities of

choosing a fair or a loaded die in the beginning of a game

a.-=0.83

State F (fair die)

e:(1)=0.17
ec(2)=0.17
e:(3)=0.17
er(4)=0.17
ex(5)=0.17

e:(6)=0.17

ag =0.17

a, -=0.60

e (1)=0.10
e (2)=0.10
e (3)=0.10
e (4)=0.10
e (5)=0.10

e, (6)=0.50

a =0.40

2y =0 i/

State L (loaded die)



Dynamic programming.
Initialization

The graph of a process.

G2
e

P(Te 4)=age"ep(M[1]), P(m_ 4 )=a, *e (M[1])




Dynamic programming.
Recursion

The graph of a process. We are looking for a path which maximizes the
probability of emission M




Dynamic programming.
Recursion

If we know the best paths ending at states L and F in position 4, we can
choose max between them and terminate the program

Choose max
(cost (N),

. o o o o cost (N,))
[ ) () e O o ©
o e O o O




Dynamic programming. Recursion

This can be repeated for each combination of a position in a sequence of
observations and one of 2 states

P(Tg ivq)=max { P(me)*age, P(m))"ae }* eg(M[i+1])

P isq)=max {P(mm_)"a,, P(Te)"ap ) * ey (M[i+1])

P(m*)=max {P(TTe \), P(TT_\)}

Note: the probabilities are multiplied, not added up
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Viterbi algorithm. Demo 1 :
0.15
F L
1 10.17 | 0.10
2 10.1710.10
3 10.1710.10
4 (017 (0.10
510.1710.10
[ e O o O
° ® o o o o 6 [0.17]0.50
o o O e o
F L
ﬁ F |0.83 |0.17
L |10.60 | 0.40
We have reached position i=1 with the probability 0.9*0.17 of | 0_[0.90 | 0.10

going to the F state and emitting 3, and with probability
0.1*0.10 of going to the L-state and emitting 3. There are no
other possibilities



Viterbi algorithm. Demo 2

0.15 0.02

0.17 1 0.10

0.17 ] 0.10

0.17 1 0.10

0.17 1 0.10

0.17 1 0.10

O~ |WOIN|-

0.17 | 0.50

0.83 | 0.17

We can reach position i=2 (F-state) with the probability L 10.60 | 0.40

0.15%0.83*0.17 or with probability 0.01*0.6*0.10. We chose the max |0 |0.90 | 0.10

between these two: 0.15*0.83*0.17=0.002

The L-state in position i=2 can be reached with probability
0.01*0.40%0.10 or 0.15*0.17*0.10=0.0026. The second is larger so
we choose it.



Viterbi algorithm. Demo 3

0.02 0.0028
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We can reach position i=3 (F-state) with the probability
0.02%0.83*0.17=0.0028 or with probability
0.0026%0.4*0.17=0.00018. We chose the max between these
two: 0.02*0.83*0.17=0.0028

The L-state in position i=3 can be reached with probability
0.02*0.17*0.50=0.0017 or 0. 0026*0.4*0.5=0.0017. We chose the
second - arbitrarily
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Viterbi algorithm. Demo 4

o 0028 0.0004

We can reach position i=4 (F-state) with the probability
0.0028*0.83*0.17=0.0004 or with probability

0.001770.6*0.17=0.00017. We chose the max between these two:

0.0028*0.83*0.17=0.0004

The L-state in position i=4 can be reached with probability
0.0017%0.40%0.50=0.00034 or 0.0028*0.17*0.5 =0.00024. We
chose the max: 0.0017*0.40*0.50=0.00034
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Viterbi algorithm. Demo - end

0.0004

Choose max: 0.0004. So, the most probable sequence of states:
FFFF
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Evidently, it is not enough to have 2 sixes in a row in order to be able to spot the

loaded die.




Viterbi algorithm. Log-values

P(TTe 1)=age"er(M[1]) P(1r 1)= ap e (M[1])

P(Tejrq)=max { P(Te)*are, P(m)"a e }* ep(M[i+1])
P(TT_ivq)=max {P(mr;)*a,, P(1Te)*ag } *e (M[i+1])

P(m*)=max {P(TTe ), P(TT_\)}

In order to avoid the underflow errors, in practice
log is used instead of the actual probabilities

P(TTe 1)=log apet log ex(M[1]) P(mm_4)= log ay + log e (M[1])
P(TTe 14 )=max {P(1g )+ log agg, P(1m )+ log a ¢ }+ log ex(M[i+1])

P(m1jsq)=max {P(1r_;)* log a,, P(1 )+ log ag, } + log e (M[i+1])

P(1r*)=max {P(1Te \), P(TT_ )}




Viterbi algorithm. Log-values

P(TTe 1)=age"es(M[1]) P(Tm_4)= ag "e (M[1])
P(Teq)=max { P(g)*ape, P(m)"air }* ep(M[i+1])
P ivq)=max {P(mm_)"a, P(TT)*ar } ", (M[i+1])

P(m*)=max {P(TTe ), P(TT_\)}

In order to avoid the underflow errors, in practice
log is used instead of the actual probabilities

P(TTe 1)=log apet log ex(M[1]) P(mm_4)= log ay + log e (M[1])
P(TTe 14 )=max {P(1g )+ log agg, P(1m )+ log a ¢ }+ log ex(M[i+1])

P(m1jsq)=max {P(1r_;)* log a,, P(1 )+ log ag, } + log e (M[i+1])

P(1r*)=max {P(1Te \), P(TT_ )}




How good is the prediction

Palls
Die
Vibcerhi

Rolls
Dia
Vicarhi

Folls
Die
Vitarhi

Folls
Cie
Vitersi
Fo.ls
Cie
Viterbl
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Overall, an underlying hidden pathway explains the given
sequence well — the model is good

Missing
short
stretches




Exercise 1. Markov models

e In Vancouver, if it rains today, then it rains
tomorrow 3 times out of 5. If it is sunny today,
it is also sunny tomorrow 1 time out of 3.

Build a Markov model for the weather in
Vancouver.



Exercise 2. Discrimination by
probability

e Markov models for the honest and for the dishonest casino are
presented below:

e(Heads)=1/2 e(Heads)=3/4
e(Tails)=1/2 e(Tails)=1/4
Fair coin Biased coin

Find out what of the coins has more probably
produced the following sequence of observations

HHHTTHT



Exercise 2. When the coin is
biased

e For sequence M of length N with k heads:
e P(M | fair coin)=I1 (1/2)=1/2N

e P (M | biased coin)=,(3/4) *T(1/4)=3K/4*1/4N-k
e For this simple model, we can find when

P(M | fair coin)< P (M | biased coin)

1/2N<3k/4N

2N<3K

Nlog,2<klog,3

K>(log,2/log,3) N

K>0.63 N



Exercise 3.

e Using the Viterbi algorithm, find the most probable
path of states for the following sequence given the
HMM which produced this sequence.

1/4

1/5

@s)ﬂm

e(Tails)=1/2

3/4

4/5

1/2
» | e(Heads)=3/4

Fair coin

1/2

e(Tails)=1/4

Biased coin

Observed sequence: HTTHHH



We can answer 2 questions

e \What is the probability that a given sequence
of observations came from a particular
Markov model

e \Where in the sequence the model has
probably changed



CpG islands

e C nucleotide followed by G is easily
methylated

e Methylated C easily becomes T

e The methylation is suppressed in important
regulatory regions — around promoters
(starting sites of transcription)

e Thus, an overall low frequency of CG di-
nucleotide is significantly increased in the
gene promoter regions



Biological questions

e Given a short stretch of DNA sequence, how
can we determine whether it came from a
CpG island or not

e Given a lon un-annotated DNA sequence,
find CpG islands in it



Markov model for DNA 435
sequence

e Usually, the end of sequence is not modelled in
Markov chain — sequence can end anywhere



(X J
mgw mgm . - o0
Transition probability estimation | g2
from real DNA sequences
e From 48 CpG islands of a
total length 60,000 M L S A LR
nucleotides, and from a A 1018 |0.2710.43 | 0.12
regular DNA stretches, the C 0.17 | 0.37 |0.27 | 0.19
transition probabilities for G 1016 1034 1038 012
each pair of nucleotides ' : : :
were estimated (expected T ]008)0.36]0.38)0.18
0.25 if at random)
- A |C |G |T
A [0.30 {0.20 | 0.29 | 0.21
afrom.to=Countfrom.to/szOuntfrom.x c 0.32 10.50 10.98 71 9.0
G [0.25|0.25|0.30 |0.20
T 0.18 | 0.24 [ 0.29 | 0.29




Am | in the CpG island?

e To use these (+) and (-) models for discrimination for a given sequence we
calculate the log-odds ratio:

Score(M)=log [ P(M|given model +)/P(M|given model -)]

If this value is positive, we are in the CpG island, if not, we are not

Test a Griven Stretch of DNA

10
Regionshh_ﬁhﬁ : - CpG Islands
free of =
CpG 5
[slands

04 03 -02 -01 6 01 02 03 04
Bils

Test on another set of labeled DNA sequences



Finding CpG islands - HMM

e The relabeling is the critical step. The essential difference
between a Markov chain and an HMM is that for HMM there is no
1-to-1 correspondence between the states and the symbols

e By looking at a single symbol, there is no way to tell whether it
came from state C+ or C-



The most probable path through | $2::
the sequence of states

e The most probable path for sequence CGCG

L C e & G
L 1 4] 0 0 0
A, O ¥ } ] 0
C,. 0 |0.13 0 0.012 i
G. 0 U |0.034 Y] 0.0032
T. 0O 0 [ 0

A. O 0 0 0 D
c. 0 013 N 0.0026 0
G_. O ¢ 0011 0  0.00021
T. O 0 { 0 0

When we apply the Viterbi algorithm to a long un-annotated DNA
sequence, the states will switch between + and -, giving suggested
boundaries for CpG islands



Defining the model for HMM

e 2 parts:
Model topology: what states there are and how
are they connected

The assignment of parameter values: the
transition and emission probabilities



Parameter estimation

e We are given a set of training sequences

e 2 cases:
When the states in the training sequences are known

afrom,to=COum:from,tolzxcoum:from,x

Sstate i(symbol j)=Countstate i(s‘ymbOI j)/Zy(symboI y)

When the states are unknown
Viterbi training



Parameter estimation when the

states are known - example

X

1

2

6

6

1

1 2

T

F

L

F

F

L

L L

e:(3)=07? ag =2/3
To avoid this, use pseudocounts ap =1/3
ee(1)=(1+1)/(3+6), 1 is a pseudocount, 6 a_ =1/3
is the number of different symbols _
a_,=2/3

eF(1)=2/9
Or with pseudocounts

e-(2)=1/(3+6)=1/9

ap =2+1/3+2=3/5
ec(3)=1/(3+6)=1/9 ’

ap (=1+1/3+2=2/5
e.(4)=1/(3+6)=1/9 ’

a, p=1+1/3+2=2/5

ec(5)=1/(3+6)=1/9
A(O)=1/(526) a, (=2+1/3+2=3/5

e.(6)=(2+1)/(3+6)=3/9




Viterbi training for parameter
estimation

e Pick a set of random parameters

e Find the most probable path of states according to
this set of parameters

e This path partitions the sequences into partitions
according to the states

e Calculate new set of parameters, now from the
known states

e Repeat — find the most probable path with the new
parameters etc. — until the path does not change
anymore



Viterbi training

e The assignment of paths is a discrete process, thus
the algorithm converges precisely.

e \When there is no path change, the parameters will
not change either, because they are determined
completely by the paths

e The algorithm maximizes the probability P(observed
data| ©, ")

and not P(observed data | @) which we ideally want



Parameter estimation —

IHlustration 1

ag =0.05 0.27

»

ar-=0.95 (LYB\
e-(1)=0.17  0.19
e-(2)=0.17  0.19
\ e-(3)=0.17 0.23
e-(4)=0.17 0.08
e-(5)=0.17 0.23
e-(6)=0.17  0.08

FAIR

»

A

a=0.1 0.29

a =0.9 0.71
e (1)=0.10  0.07
e (2)=0.10 0.10
e (3)=0.10  0.10
e (4)=0.10 0.17
e (5)=0.10  0.05
e (6)=0.50 0.52
LOADED

The parameters estimated from 300 random rolls and an iterative

process started from randomly selected parameters



Parameter estimation —

Illustration 2

ag =0.05 0.07

»

ar-=0.95 093
e-(1)=0.17 0.17
e-(2)=0.17 0.19

\ e-(3)=0.17 0.17
er(4)=0.17 0.17
e-(5)=0.17 0.17
e-(6)=0.17 0.15

FAIR

»

A

a=0.1 0.12

a =0.9 0.88
e (1)=0.10  0.10
e (2)=0.10  0.11
e (3)=0.10  0.10
e (4)=0.10  0.11
e (5)=0.10  0.10
e (6)=0.50 0.48
LOADED

The parameters estimated from 30 000 random rolls and an
iterative process started from randomly selected parameters
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