Markov Models

Lecture 10

We can use the conditional probabilities for discrimination

We can just compare P(M and model L) and P(M and model F)

We can use the conditional probabilities for discrimination

	F	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50

P(M and model L)=0.5*0.5*0.5*0.1*0.5*0.1=0.000625

P(M and model F)=0.17*0.17*0.17*0.17*0.17*0.17=0.000024

How confident we are that this sequence was produced by a loaded die?

P(M and model L)/ P(M and model F)=25.89

Or log [P(M and model L)/ P(M and model F)]=1.4

The occasionally dishonest casino

Sequence generated by a model of an occasionally dishonest casino

Markov chains

- A general model of a system which moves from state to state with some probability *a_{ij}*, called a *transition probability*
- While in a particular state, system emits a symbol m_k from a finite alphabet with the probability e_i(m_k), called an emission probability of symbol m_k in state W_i
- If we construct the schedule of observation times and at each point in time record the symbols emitted by a system along with the state, we obtain 2 sequences: the sequence of emitted symbols which is called an observed sequence M, and the sequence of states which is called a *path* through system states

Markov chain terminology

Emission probabilities

Markov model diagram

State F (fair die)

State L (loaded die)

Markov model parameters

The transition matrix

	F	L
F	0.83	0.17
L	0.60	0.40

Emission probabilities

	F	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50

Hidden Markov Model (HMM)

• States are unknown (hidden)

Questions to HMM

- Given a sequence of observations, what is the most probable sequence of the underlying states (Most probable path)
- Given a sequence of N observations, what is the probability of obtaining this sequence given a model described by a particular HMM (Sequence probability)
- Given a sequence of N observations, what is the probability that the i-th observation was produced when the system was in state Wj

The probability that the sequence was generated given a particular path

- Pick the path π
- The probability P(M| π) is the conditional probability that sequence M was generated while system was moving from state to state according to π

The probability that the sequence M was generated following a path π

- Pick a path π
- Calculate a joint probability of π and M

A suggested path

P(M and π)=0.17 * 0.83*0.17 * 0.17*0.50 * 0.60*0.50=0.0006

 Repeat for each possible path and choose a path which maximizes
P(π and M). Total 2^N calculations

	F	L
F	0.83	0.17
L	0.60	0.40

Viterbi algorithm for the most probable path

Dynamic programming

Dynamic programming. Initialization – the probability of choosing a die for the first time

 Add to the system a start state and parameters – the probabilities of choosing a fair or a loaded die in the beginning of a game

State F (fair die)

Dynamic programming. Initialization

The graph of a process.

 $P(\pi_{F,1})=a_{0F}*e_{F}(M[1]), P(\pi_{L,1})=a_{0L}*e_{L}(M[1])$

Dynamic programming. Recursion

The graph of a process. We are looking for a path which maximizes the probability of emission M

Dynamic programming. Recursion

If we know the best paths ending at states L and F in position 4, we can choose max between them and terminate the program

Dynamic programming. Recursion

This can be repeated for each combination of a position in a sequence of observations and one of 2 states

$$\begin{split} \mathsf{P}(\pi_{\mathsf{F},i+1}) = \max \left\{ \begin{array}{l} \mathsf{P}(\pi_{\mathsf{F},i})^* a_{\mathsf{F}\mathsf{F}}, & \mathsf{P}(\pi_{\mathsf{L},i})^* a_{\mathsf{L}\mathsf{F}} \end{array} \right\}^* e_{\mathsf{F}}(\mathsf{M}[\mathsf{i}\!+\!1]) \\ \mathsf{P}(\pi_{\mathsf{L},i+1}) = \max \left\{ \mathsf{P}(\pi_{\mathsf{L},i})^* a_{\mathsf{L}\mathsf{L}}, \, \mathsf{P}(\pi_{\mathsf{F},i})^* a_{\mathsf{F}\mathsf{L}} \right\}^* e_{\mathsf{L}}\left(\mathsf{M}[\mathsf{i}\!+\!1]\right) \\ \mathsf{P}(\pi^*) = \max \left\{ \mathsf{P}(\pi_{\mathsf{F},\mathsf{N}}), \, \mathsf{P}(\pi_{\mathsf{L},\mathsf{N}}) \right\} \end{split}$$

Note: the probabilities are *multiplied*, not added up

F

We have reached position i=1 with the probability 0.9*0.17 of going to the F state and emitting 3, and with probability 0.1*0.10 of going to the L-state and emitting 3. There are no other possibilities

We can reach position i=2 (F-state) with the probability 0.15*0.83*0.17 or with probability 0.01*0.6*0.10. We chose the max between these two: 0.15*0.83*0.17=0.002

The L-state in position i=2 can be reached with probability 0.01*0.40*0.10 or 0.15*0.17*0.10=0.0026. The second is larger so we choose it.

	F	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

We can reach position i=3 (F-state) with the probability 0.02*0.83*0.17=0.0028 or with probability 0.0026*0.4*0.17=0.00018. We chose the max between these two: 0.02*0.83*0.17=0.0028

The L-state in position i=3 can be reached with probability 0.02*0.17*0.50=0.0017 or 0. 0026*0.4*0.5=0.0017. We chose the second - arbitrarily

	F	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

We can reach position i=4 (F-state) with the probability 0.0028*0.83*0.17=0.0004 or with probability 0.0017*0.6*0.17=0.00017. We chose the max between these two: 0.0028*0.83*0.17=0.0004

The L-state in position i=4 can be reached with probability 0.0017*0.40*0.50=0.00034 or 0.0028*0.17*0.5 =0.00024. We chose the max: 0.0017*0.40*0.50=0.00034

FFFF

Evidently, it is not enough to have 2 sixes in a row in order to be able to spot the loaded die.

Viterbi algorithm. Log-values

 $P(\pi_{F,1}) = a_{0F}^* e_F(M[1]) \qquad P(\pi_{L,1}) = a_{0L}^* e_L(M[1])$

 $P(\pi_{F,i+1})=max \{ P(\pi_{F,i})^*a_{FF}, P(\pi_{L,i})^*a_{LF} \}^* e_F(M[i+1])$

 $P(\pi_{L,i+1})=max \{P(\pi_{L,i})^*a_{LL}, P(\pi_{F,i})^*a_{FL}\} *e_L (M[i+1])$

 $P(\pi^*)=max \{P(\pi_{F,N}), P(\pi_{L,N})\}$

In order to avoid the underflow errors, in practice log is used instead of the actual probabilities

$$\begin{split} \mathsf{P}(\pi_{\mathsf{F},1}) = \log a_{0\mathsf{F}} + \log e_{\mathsf{F}}(\mathsf{M}[1]) & \mathsf{P}(\pi_{\mathsf{L},1}) = \log a_{0\mathsf{L}} + \log e_{\mathsf{L}}(\mathsf{M}[1]) \\ \mathsf{P}(\pi_{\mathsf{F},i+1}) = \max \{\mathsf{P}(\pi_{\mathsf{F},i}) + \log a_{\mathsf{FF}}, \mathsf{P}(\pi_{\mathsf{L},i}) + \log a_{\mathsf{LF}} \} + \log e_{\mathsf{F}}(\mathsf{M}[i+1]) \\ \mathsf{P}(\pi_{\mathsf{L},i+1}) = \max \{\mathsf{P}(\pi_{\mathsf{L},i}) + \log a_{\mathsf{LL}}, \mathsf{P}(\pi_{\mathsf{F},i}) + \log a_{\mathsf{FL}} \} + \log e_{\mathsf{L}}(\mathsf{M}[i+1]) \\ \mathsf{P}(\pi^*) = \max \{\mathsf{P}(\pi_{\mathsf{F},\mathsf{N}}), \mathsf{P}(\pi_{\mathsf{L},\mathsf{N}})\} \end{split}$$

Viterbi algorithm. Log-values

 $P(\pi_{F,1}) = a_{0F}^* e_F(M[1]) \qquad P(\pi_{L,1}) = a_{0L}^* e_L(M[1])$

 $P(\pi_{F,i+1})=max \{ P(\pi_{F,i})^*a_{FF}, P(\pi_{L,I})^*a_{LF} \}^* e_F(M[i+1]) \}$

 $P(\pi_{L,i+1})=max \{P(\pi_{L,i})^*a_{LL}, P(\pi_{F,i})^*a_{FL}\} *e_L (M[i+1])$

 $P(\pi^*)=max \{P(\pi_{F,N}), P(\pi_{L,N})\}$

In order to avoid the underflow errors, in practice log is used instead of the actual probabilities

$$\begin{split} \mathsf{P}(\pi_{\mathsf{F},1}) = \log a_{0\mathsf{F}} + \log e_{\mathsf{F}}(\mathsf{M}[1]) & \mathsf{P}(\pi_{\mathsf{L},1}) = \log a_{0\mathsf{L}} + \log e_{\mathsf{L}}(\mathsf{M}[1]) \\ \mathsf{P}(\pi_{\mathsf{F},i+1}) = \max \{\mathsf{P}(\pi_{\mathsf{F},i}) + \log a_{\mathsf{FF}}, \mathsf{P}(\pi_{\mathsf{L},i}) + \log a_{\mathsf{LF}} \} + \log e_{\mathsf{F}}(\mathsf{M}[i+1]) \\ \mathsf{P}(\pi_{\mathsf{L},i+1}) = \max \{\mathsf{P}(\pi_{\mathsf{L},i}) + \log a_{\mathsf{LL}}, \mathsf{P}(\pi_{\mathsf{F},i}) + \log a_{\mathsf{FL}} \} + \log e_{\mathsf{L}}(\mathsf{M}[i+1]) \\ \mathsf{P}(\pi^*) = \max \{\mathsf{P}(\pi_{\mathsf{F},\mathsf{N}}), \mathsf{P}(\pi_{\mathsf{L},\mathsf{N}})\} \end{split}$$

Н	ow good is the prediction	
Rolls Die Viterbi Rolls Die Viterbi	315115245446544245311321631164152133625144544631656526566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF	delay
Rolls Die Viterbi	222555441666566563564324364131513465146353411126414626253356 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	Missing short stretches
Rolls Die Viterbi	366163666466232534413661661163252562462255265252266435353336 LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFF	
Rolls Die Viterbi	233121625364414432335163243633665562466662632656612355245242 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	

Overall, an underlying hidden pathway explains the given sequence well – the model is good

Exercise 1. Markov models

 In Vancouver, if it rains today, then it rains tomorrow 3 times out of 5. If it is sunny today, it is also sunny tomorrow 1 time out of 3. Build a Markov model for the weather in Vancouver.

Exercise 2. Discrimination by probability

Markov models for the honest and for the dishonest casino are presented below:

> e(Heads)=1/2 e(Tails)=1/2

> > Fair coin

e(e(

Find out what of the coins has more probably produced the following sequence of observations

HHHTTHT

Exercise 2. When the coin is biased

- For sequence M of length N with k heads:
- P(M I fair coin)= $\Pi_n(1/2)=1/2^N$
- P (M | biased coin)= $\Pi_k(3/4) * \Pi_{N-k}(1/4) = 3^k/4^{k*1}/4^{N-k}$
- For this simple model, we can find when
- P(M I fair coin) < P (M | biased coin)
- 1/2^N<3^k/4^N
- 2^N<3K
- Nlog₂2<klog₂3
- $K>(log_22/log_23) N$
- K>0.63 N

Exercise 3.

• Using the Viterbi algorithm, find the most probable path of states for the following sequence given the HMM which produced this sequence.

Observed sequence: HTTHHH

We can answer 2 questions

- What is the probability that a given sequence of observations came from a particular Markov model
- Where in the sequence the model has probably changed

CpG islands

- C nucleotide followed by G is easily methylated
- Methylated C easily becomes T
- The methylation is suppressed in important regulatory regions – around promoters (starting sites of transcription)
- Thus, an overall low frequency of CG dinucleotide is significantly increased in the gene promoter regions

Biological questions

- Given a short stretch of DNA sequence, how can we determine whether it came from a CpG island or not
- Given a lon un-annotated DNA sequence, find CpG islands in it

Markov model for DNA sequence

 Usually, the end of sequence is not modelled in Markov chain – sequence can end anywhere

Transition probability estimation from real DNA sequences

 From 48 CpG islands of a total length 60,000 nucleotides, and from a regular DNA stretches, the transition probabilities for each pair of nucleotides were estimated (expected 0.25 if at random)

+	А	С	G	Т
А	0.18	0.27	0.43	0.12
С	0.17	0.37	0.27	0.19
G	0.16	0.34	0.38	0.12
Т	0.08	0.36	0.38	0.18

-	А	С	G	Т
А	0.30	0.20	0.29	0.21
С	0.32	0.30	0.08	0.30
G	0.25	0.25	0.30	0.20
Т	0.18	0.24	0.29	0.29

 $a_{from to} = count_{from to} / \Sigma_{x} count_{from x}$

Am I in the CpG island?

• To use these (+) and (-) models for discrimination for a given sequence we calculate the log-odds ratio:

Score(M)=log [P(M|given model +)/P(M|given model -)]

If this value is positive, we are in the CpG island, if not, we are not

Test on another set of labeled DNA sequences

Finding CpG islands - HMM

- The relabeling is the critical step. The essential difference between a Markov chain and an HMM is that for HMM there is no 1-to-1 correspondence between the states and the symbols
- By looking at a single symbol, there is no way to tell whether it came from state C+ or C-

The most probable path through the sequence of states

• The most probable path for sequence CGCG

When we apply the Viterbi algorithm to a long un-annotated DNA sequence, the states will switch between + and -, giving suggested boundaries for CpG islands

Defining the model for HMM

- 2 parts:
 - Model topology: what states there are and how are they connected
 - The assignment of parameter values: the transition and emission probabilities

Parameter estimation

- We are given a set of training sequences
- 2 cases:
 - When the states in the training sequences are known
 - $a_{from,to} = count_{from,to} / \Sigma_x count_{from,x}$
 - $e_{\text{state i}}(\text{symbol j})=\text{count}_{\text{state i}}(\text{symbol j})/\Sigma_y(\text{symbol y})$
 - When the states are unknown
 - Viterbi training

Parameter estimation when the states are known - example

e_F(3)=0 ?

To avoid this, use pseudocounts

 $e_F(1)=(1+1)/(3+6)$, 1 is a pseudocount, 6 is the number of different symbols

eF(1)=2/9

e_F(2)=1/(3+6)=1/9

e_F(3)=1/(3+6)=1/9

e_F(4)=1/(3+6)=1/9

e_F(5)=1/(3+6)=1/9

e_F(6)=(2+1)/(3+6)=3/9

a_{F,L}=2/3 a_{F,F}=1/3 a_{L,F}=1/3 a_{L,L}=2/3

Or with pseudocounts

 $a_{F,L}=2+1/3+2=3/5$ $a_{F,F}=1+1/3+2=2/5$ $a_{L,F}=1+1/3+2=2/5$ $a_{L,L}=2+1/3+2=3/5$

Viterbi training for parameter estimation

- Pick a set of random parameters
- Find the most probable path of states according to this set of parameters
- This path partitions the sequences into partitions according to the states
- Calculate new set of parameters, now from the known states
- Repeat find the most probable path with the new parameters etc. – until the path does not change anymore

Viterbi training

- The assignment of paths is a discrete process, thus the algorithm converges precisely.
- When there is no path change, the parameters will not change either, because they are determined completely by the paths
- The algorithm maximizes the probability P(observed data| $\Theta,\,\pi^*)$

and not P(observed data $| \Theta$) which we ideally want

Parameter estimation – illustration 1

The parameters estimated from 300 random rolls and an iterative process started from randomly selected parameters

Parameter estimation – illustration 2

The parameters estimated from 30 000 random rolls and an iterative process started from randomly selected parameters