Markov Models

Lecture 10

The honest and the dishonest casino

We can use the conditional probabilities for discrimination

We can just compare $P(M$ and model $L)$ and $P(M$ and model $F)$

We can use the conditional probabilities for discrimination

$\mathrm{P}(\mathrm{M}$ and model L$)=0.5^{*} 0.5^{*} 0.5^{*} 0.1^{*} 0.5^{*} 0.1=0.000625$
$P(M$ and model $F)=0.17^{*} 0.17^{*} 0.17^{*} 0.17^{*} 0.17^{*} 0.17=0.000024$

	F	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50

How confident we are that this sequence was produced by a loaded die?
$P(M$ and model L$) / \mathrm{P}(\mathrm{M}$ and model F$)=25.89$
Or $\log [P(M$ and model $L) / P(M$ and model $F)]=1.4$

The occasionally dishonest casino

Sequence generated by a model of an occasionally dishonest casino

Markov chains

- A general model of a system which moves from state to state with some probability $a_{i j}$, called a transition probability
- While in a particular state, system emits a symbol m_{k} from a finite alphabet with the probability $e_{i}\left(m_{k}\right)$, called an emission probability of symbol m_{k} in state Wi
- If we construct the schedule of observation times and at each point in time record the symbols emitted by a system along with the state, we obtain 2 sequences: the sequence of emitted symbols which is called an observed sequence M , and the sequence of states which is called a path through system states

Markov chain terminology

Transition probabilities

Markov chain terminology

Emission probabilities

Markov model diagram

Markov model parameters

Emission probabilities
The transition matrix

	F	L
F	0.83	0.17
L	0.60	0.40

	F	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50

Hidden Markov Model (HMM)

- States are unknown (hidden)

Questions to HMM

- Given a sequence of observations, what is the most probable sequence of the underlying states (Most probable path)
- Given a sequence of N observations, what is the probability of obtaining this sequence given a model described by a particular HMM (Sequence probability)
- Given a sequence of N observations, what is the probability that the i-th observation was produced when the system was in state Wj

The probability that the sequence was generated given a particular path

- Pick the path π
- The probability $\mathrm{P}(\mathrm{M} \mid \pi)$ is the conditional probability that sequence M was generated while system was moving from state to state according to π

The probability that the sequence M was generated following a path π

- Pick a path π
- Calculate a joint probability of π and M

A suggested path

$P(M$ and $\pi)=0.17{ }^{*} 0.83^{*} 0.17$ * $0.17^{*} 0.50$ * $0.60 * 0.50=0.0006$

	F	L
F	0.83	0.17
L	0.60	0.40

- Repeat for each possible path and choose a path which maximizes
$P(\pi$ and $M)$. Total 2^{N} calculations

Viterbi algorithm for the most probable path

Dynamic programming

Dynamic programming. Initialization the probability of choosing a die for the first time

- Add to the system a start state and parameters - the probabilities of choosing a fair or a loaded die in the beginning of a game

State F (fair die)
State L (loaded die)

Dynamic programming. Initialization

The graph of a process.

Dynamic programming. Recursion

The graph of a process. We are looking for a path which maximizes the probability of emission M

Dynamic programming. Recursion

If we know the best paths ending at states L and F in position 4 , we can choose max between them and terminate the program

Dynamic programming. Recursion

This can be repeated for each combination of a position in a sequence of observations and one of 2 states

Note: the probabilities are multiplied, not added up

Viterbi algorithm. Demo 1

We have reached position $i=1$ with the probability $0.9^{*} 0.17$ of

	F^{\prime}	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

Viterbi algorithm. Demo 2

 between these two: $0.15^{*} 0.83^{*} 0.17=0.002$

The L-state in position $\mathrm{i}=2$ can be reached with probability $0.01^{*} 0.40^{*} 0.10$ or $0.15^{*} 0.17^{*} 0.10=0.0026$. The second is larger so we choose it.

Viterbi algorithm. Demo 3

We can reach position $\mathrm{i}=3$ (F -state) with the probability $0.02 * 0.83^{*} 0.17=0.0028$ or with probability

	F^{\prime}	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

The L-state in position $i=3$ can be reached with probability $0.02^{*} 0.17^{*} 0.50=0.0017$ or $0.0026^{*} 0.4^{*} 0.5=0.0017$. We chose the second - arbitrarily

Viterbi algorithm. Demo 4

We can reach position $\mathrm{i}=4$ (F -state) with the probability $0.0028 * 0.83 * 0.17=0.0004$ or with probability

	F^{\prime}	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

The L-state in position $\mathrm{i}=4$ can be reached with probability $0.0017 * 0.40 * 0.50=0.00034$ or $0.0028 * 0.17 * 0.5=0.00024$. We chose the max: $0.0017 * 0.40 * 0.50=0.00034$

Viterbi algorithm. Demo - end

Choose max: 0.0004 . So, the most probable sequence of states: FFFF

	F^{\prime}	L
1	0.17	0.10
2	0.17	0.10
3	0.17	0.10
4	0.17	0.10
5	0.17	0.10
6	0.17	0.50
	F	L
F	0.83	0.17
L	0.60	0.40
0	0.90	0.10

Evidently, it is not enough to have 2 sixes in a row in order to be able to spot the loaded die.

Viterbi algorithm. Log-values

$$
\begin{aligned}
& P\left(\pi_{F, 1}\right)=a_{0 F}{ }^{*} e_{F}(M[1]) \quad P\left(\pi_{L, 1}\right)=a_{0 L}{ }^{*} e_{L}(M[1]) \\
& P\left(\pi_{F, i+1}\right)=\max \left\{P\left(\pi_{F, i}\right)^{*} a_{F F}, P\left(\pi_{L, 1}\right)^{*} a_{L F}\right\}^{*} e_{F}(M[i+1]) \\
& P\left(\pi_{L, i+1}\right)=\max \left\{P\left(\pi_{L, i}\right)^{*} a_{L L}, P\left(\pi_{F, i}\right)^{*} a_{F L}\right\}^{*} e_{L}(M[i+1]) \\
& P\left(\pi^{*}\right)=\max \left\{P\left(\pi_{F, N}\right), P\left(\pi_{L, N}\right)\right\}
\end{aligned}
$$

In order to avoid the underflow errors, in practice log is used instead of the actual probabilities

$$
\begin{aligned}
& P\left(\pi_{F, 1}\right)=\log a_{0 F}+\log e_{F}(M[1]) \quad P\left(\pi_{L, 1}\right)=\log a_{0 L}+\log e_{L}(M[1]) \\
& P\left(\pi_{F, i+1}\right)=\max \left\{P\left(\pi_{F, i}\right)+\log a_{F F}, P\left(\pi_{L, 1}\right)+\log a_{L F}\right\}+\log e_{F}(M[i+1]) \\
& P\left(\pi_{L, i+1}\right)=\max \left\{P\left(\pi_{L, i}\right)+\log a_{L L}, P\left(\pi_{F, i}\right)+\log a_{F L}\right\}+\log e_{L}(M[i+1]) \\
& P\left(\pi^{*}\right)=\max \left\{P\left(\pi_{F, N}\right), P\left(\pi_{L, N}\right)\right\}
\end{aligned}
$$

Viterbi algorithm. Log-values

$$
\begin{aligned}
& P\left(\pi_{F, 1}\right)=a_{0 F}{ }^{*} e_{F}(M[1]) \quad P\left(\pi_{L, 1}\right)=a_{0 L}{ }^{*} e_{L}(M[1]) \\
& P\left(\pi_{F, i+1}\right)=\max \left\{P\left(\pi_{F, i}\right)^{*} a_{F F}, \quad P\left(\pi_{L, 1}\right)^{*} a_{L F}\right\}^{*} e_{F}(M[i+1]) \\
& P\left(\pi_{L, i+1}\right)=\max \left\{P\left(\pi_{L, i}\right)^{*} a_{L L}, P\left(\pi_{F, i}\right)^{*} a_{F L}\right\}^{*} e_{L}(M[i+1]) \\
& P\left(\pi^{*}\right)=\max \left\{P\left(\pi_{F, N}\right), P\left(\pi_{L, N}\right)\right\}
\end{aligned}
$$

In order to avoid the underflow errors, in practice log is used instead of the actual probabilities

$$
\begin{aligned}
& P\left(\pi_{F, 1}\right)=\log a_{0 F}+\log e_{F}(M[1]) \quad P\left(\pi_{L, 1}\right)=\log a_{0 L}+\log e_{L}(M[1]) \\
& P\left(\pi_{F, i+1}\right)=\max \left\{P\left(\pi_{F, i}\right)+\log a_{F F}, P\left(\pi_{L, 1}\right)+\log a_{L F}\right\}+\log e_{F}(M[i+1]) \\
& P\left(\pi_{L, i+1}\right)=\max \left\{P\left(\pi_{L, i}\right)+\log a_{L L}, P\left(\pi_{F, i}\right)+\log a_{F L}\right\}+\log e_{L}(M[i+1]) \\
& P\left(\pi^{*}\right)=\max \left\{P\left(\pi_{F, N}\right), P\left(\pi_{L, N}\right)\right\}
\end{aligned}
$$

How good is the prediction

Rolls	31511524644654424531132163116415213352514454 631655526566666	
Die		
Viterbi	FFF FFFFPFFPFPFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFIFFFLLLLLLLLLLLL	delay
Rolls	651166453132551245636564631636663 /62326455236266666525151631	
Die		
Viterbi	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLALLLLLILLLLLLLLLLLLEFFFFFPFF	
Rolls	222555441656565563564324364131513465.46353411126414626253356	Missing
Die		short
Viterbi		stretches
Rolls	366163666466232534413661661163252562462255265252266435353336	
Die		
viterbi	LLLLLLLLLLLLLFFFFFEFFPFFEFFFFFFEFEYFFFEFEFFFEFEFEFFFEFFFFFFEF	
Ro_ls	233121625364414432335163243633655624666626326566.2355245242	
Eie	FFFFPFFFFFFFFPFFFFFFFFFPFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF	
viterbi		

Overall, an underlying hidden pathway explains the given sequence well - the model is good

Exercise 1. Markov models

- In Vancouver, if it rains today, then it rains tomorrow 3 times out of 5 . If it is sunny today, it is also sunny tomorrow 1 time out of 3 . Build a Markov model for the weather in Vancouver.

Exercise 2. Discrimination by probability

- Markov models for the honest and for the dishonest casino are presented below:

$$
\begin{aligned}
& e(\text { Heads })=1 / 2 \\
& e(\text { Tails })=1 / 2
\end{aligned}
$$

Fair coin

$$
\begin{aligned}
& e(\text { Heads })=3 / 4 \\
& e(\text { Tails })=1 / 4
\end{aligned}
$$

Biased coin

Find out what of the coins has more probably produced the following sequence of observations

Exercise 2. When the coin is

 biased- For sequence M of length N with k heads:
- $P(M$ I fair coin $)=\Pi_{n}(1 / 2)=1 / 2^{N}$
- $P(M \mid$ biased coin $)=\Pi_{k}(3 / 4) * \Pi_{N-k}(1 / 4)=3^{k} / 4^{k *} 1 / 4^{N-k}$
- For this simple model, we can find when
$P(M$ I fair coin $)<P(M \mid$ biased coin)
$1 / 2^{\mathrm{N}}<3^{\mathrm{K}} / 4^{\mathrm{N}}$
$2^{\mathrm{N}}<3 \mathrm{~K}$
$\mathrm{Nlog}_{2} 2<\mathrm{klog}_{2} 3$
$K>\left(\log _{2} 2 / \log _{2} 3\right) N$
$\mathrm{K}>0.63 \mathrm{~N}$

Exercise 3.

- Using the Viterbi algorithm, find the most probable path of states for the following sequence given the HMM which produced this sequence.

Observed sequence: HTTHHH

We can answer 2 questions

- What is the probability that a given sequence of observations came from a particular Markov model
- Where in the sequence the model has probably changed

CpG islands

- C nucleotide followed by G is easily methylated
- Methylated C easily becomes T
- The methylation is suppressed in important regulatory regions - around promoters (starting sites of transcription)
- Thus, an overall low frequency of CG dinucleotide is significantly increased in the gene promoter regions

Biological questions

- Given a short stretch of DNA sequence, how can we determine whether it came from a CpG island or not
- Given a lon un-annotated DNA sequence, find CpG islands in it

Markov model for DNA sequence

- Usually, the end of sequence is not modelled in Markov chain - sequence can end anywhere

Transition probability estimation from real DNA sequences

- From 48 CpG islands of a total length 60,000 nucleotides, and from a regular DNA stretches, the transition probabilities for each pair of nucleotides were estimated (expected 0.25 if at random)
$\mathrm{a}_{\text {from,to }}=$ count $_{\text {from,to }} / \Sigma_{x}$ count $_{\text {from }, x}$

+	A	C	G	T
A	0.18	0.27	0.43	0.12
C	0.17	0.37	0.27	0.19
G	0.16	0.34	0.38	0.12
T	0.08	0.36	0.38	0.18

-	A	C	G	T
A	0.30	0.20	0.29	0.21
C	0.32	0.30	0.08	0.30
G	0.25	0.25	0.30	0.20
T	0.18	0.24	0.29	0.29

Am I in the CpG island?

- To use these (+) and (-) models for discrimination for a given sequence we calculate the log-odds ratio:

Score(M)=log [$\mathbf{P (M | g i v e n ~ m o d e l ~ + ~}) / \mathbf{P}(\mathrm{M} \mid$ given model -)]

If this value is positive, we are in the CpG island, if not, we are not

Test on another set of labeled DNA sequences

Finding CpG islands - HMM

- The relabeling is the critical step. The essential difference between a Markov chain and an HMM is that for HMM there is no 1-to-1 correspondence between the states and the symbols
- By looking at a single symbol, there is no way to tell whether it came from state C+ or C-

The most probable path through the sequence of states

- The most probable path for sequence CGCG

v		C	G	C	G
\boldsymbol{B}	1	0	0	0	0
\mathbf{A}_{+}	0	0	0	0	0
C_{+}	0	0.13	0	$\mathbf{0 . 0 1 2}$	0
G_{+}	0	0	$\mathbf{0 . 0 3 4}$	0	$\mathbf{0 . 0 0 3 2}$
$\mathrm{~T}_{+}$	0	0	0	0	0
\mathbf{A}_{-}	0	0	0	0	0
C_{-}	0	0.13	0	0.0026	0
\mathbf{G}_{-}	0	0	0.010	0	0.00021
\mathbf{T}_{-}	0	0	0	0	0

When we apply the Viterbi algorithm to a long un-annotated DNA sequence, the states will switch between + and - , giving suggested boundaries for CpG islands

Defining the model for HMM

- 2 parts:
- Model topology: what states there are and how are they connected
- The assignment of parameter values: the transition and emission probabilities

Parameter estimation

- We are given a set of training sequences
- 2 cases:
- When the states in the training sequences are known
- $\mathrm{a}_{\text {from }, \mathrm{to}}=$ count $_{\text {from }, \mathrm{to}} / \Sigma_{\mathrm{x}}$ count $_{\text {from }, \mathrm{x}}$
- $e_{\text {state } i}($ Symbol $j)=$ count $_{\text {state } i}($ symbol $j) / \Sigma_{y}($ symbol $y)$
- When the states are unknown
- Viterbi training

Parameter estimation when the states are known - example

X	1	2	6	6	1	1	2
π	F	L	F	F	L	L	L

$$
e_{F}(3)=0 ?
$$

To avoid this, use pseudocounts
$e_{F}(1)=(1+1) /(3+6), 1$ is a pseudocount, 6 is the number of different symbols

$$
e F(1)=2 / 9
$$

$$
e_{F}(2)=1 /(3+6)=1 / 9
$$

$$
e_{F}(3)=1 /(3+6)=1 / 9
$$

$$
e_{F}(4)=1 /(3+6)=1 / 9
$$

$$
e_{F}(5)=1 /(3+6)=1 / 9
$$

$$
e_{F}(6)=(2+1) /(3+6)=3 / 9
$$

$$
\begin{aligned}
& a_{F, L}=2 / 3 \\
& a_{F, F}=1 / 3 \\
& a_{L, F}=1 / 3 \\
& a_{L, L}=2 / 3
\end{aligned}
$$

Or with pseudocounts

$$
\begin{aligned}
& a_{F, L}=2+1 / 3+2=3 / 5 \\
& a_{F, F}=1+1 / 3+2=2 / 5 \\
& a_{\mathrm{L}, \mathrm{~F}}=1+1 / 3+2=2 / 5 \\
& a_{\mathrm{L}, \mathrm{~L}}=2+1 / 3+2=3 / 5
\end{aligned}
$$

Viterbi training for parameter estimation

- Pick a set of random parameters
- Find the most probable path of states according to this set of parameters
- This path partitions the sequences into partitions according to the states
- Calculate new set of parameters, now from the known states
- Repeat - find the most probable path with the new parameters etc. - until the path does not change anymore

Viterbi training

- The assignment of paths is a discrete process, thus the algorithm converges precisely.
- When there is no path change, the parameters will not change either, because they are determined completely by the paths
- The algorithm maximizes the probability P (observed data| Θ, π^{*})
and not $P($ observed data $\mid \Theta)$ which we ideally want

Parameter estimation illustration 1

The parameters estimated from 300 random rolls and an iterative process started from randomly selected parameters

Parameter estimation illustration 2

The parameters estimated from 30000 random rolls and an iterative process started from randomly selected parameters

