
String similarity and 
alignments

Lecture 7



The edit-distance based similarity 
metric

S a c c g c
S1 a c t c

S a c c g c

S2 a c c c t g c

The smaller is the edit distance, the larger is the similarity

The edit distance alone is not always sufficient metric to characterize 
similarity between strings

In these 2 examples, the edit distance between S and S1 is the same 
as an edit distance between S and S2, but it is intuitively clear that S is 
more similar to S2 than to S1, since they share more identical 
characters

We want to evaluate what was preserved rather than what changed to 
infer the common pattern



The longest common 
substring

The longest substring, common to both strings, 
the longest sequence of consecutive 
characters which occur in both strings

The longest sequence of consecutive matches

The linear-time solution via suffix tree



The longest common 
subsequence

A subsequence of a string S is a subset of 
characters of S in their original relative order

A subsequence does not need to consist of the 
consecutive characters of S

Given 2 strings S1 and S2, a common 
subsequence for 2 strings is a subsequence which 
appears both in S1 and S2

The longest common subsequence is a longest 
between all possible subsequences of S1 and S2



Substring vs subsequence

w i n t e r s

w i n t e r s

w i n t e r s

its –

 

a subsequence of winters

inter –

 

both substring and subsequence of 
winters



Longest Common Subsequence 
(LCS)

m a d b u n n y

b a d m o n e y

m a d b u n n y

b a d m o n e y

How can we be sure that adny is the longest common subsequence



The Dynamic Programming 
solution for LCS. Edit graph

b a d m o n e y
0

m
a
d
b
u
n
n
y

Since we are interested in a 
longest sequence of matches, 
we give to the red edges cost 1 
and to all the other edges cost 0

Since aligning 2 different 
characters does not contribute 
to the total score we do not 
consider the diagonal edges in 
case of mismatch

1

0

0 0

0



The Dynamic Programming solution 
for LCS. The greediest path

The problem can be 
reduced to finding the 
greediest (the longest) 
path through matches -

the path with the largest 
cost

1

0

0 0

0

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0
a 0
d 0
b 0
u 0
n 0
n 0
y 0



Base condition

All the black edges are of 
cost 0, so moving strictly 
right or down gives paths 
of a total cost 0

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0
a 0
d 0
b 0
u 0
n 0
n 0
y 0



LCS. Recurrence relation

COST(i-1,j)

COST(i,j)=max COST(i,j-1)

COST(i-1,j-1)+1 if S1[i]=S2[j]



Tabular computation. Row 1

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0

b 0

u 0

n 0

n 0

y 0



Tabular computation. Row 2

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1
a 0 0 1 1 1 1 1 1 1
d 0
b 0
u 0
n 0
n 0
y 0

Alternative path



Tabular computation. Row 3

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1
a 0 0 1 1 1 1 1 1 1
d 0 0 1 2 2 2 2 2 2
b 0
u 0
n 0
n 0
y 0



Tabular computation. Row 4

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1
a 0 0 1 1 1 1 1 1 1
d 0 0 1 2 2 2 2 2 2
b 0 1 1 2 2 2 2 2 2
u 0
n 0
n 0
y 0



Tabular computation. Rows 5,6z

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1
a 0 0 1 1 1 1 1 1 1
d 0 0 1 2 2 2 2 2 2
b 0 1 1 2 2 2 2 2 2
u 0 1 1 2 2 2 2 2 2
n 0 1 1 2 2 2 3 3 3
n 0
y 0



Tabular computation. Rows 7,8

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1
a 0 0 1 1 1 1 1 1 1
d 0 0 1 2 2 2 2 2 2
b 0 1 1 2 2 2 2 2 2
u 0 1 1 2 2 2 2 2 2
n 0 1 1 2 2 2 3 3 3
n 0 1 1 2 2 2 3 3 3
y 0 1 1 2 2 2 3 3 4

Read the length of the 
longest common 
subsequence in cell [N][M]



LCS. Traceback

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1
a 0 0 1 1 1 1 1 1 1
d 0 0 1 2 2 2 2 2 2
b 0 1 1 2 2 2 2 2 2
u 0 1 1 2 2 2 2 2 2
n 0 1 1 2 2 2 3 3 3
n 0 1 1 2 2 2 3 3 3
y 0 1 1 2 2 2 3 3 4

Find the subsequence 
itself following the 
sequence of matches 
backwards



LCS. Alignment 
b a d m o n e y

0 0 0 0 0 0 0 0 0
m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1
d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2
u 0 1 1 2 2 2 2 2 2
n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3
y 0 1 1 2 2 2 3 3 4

j

i S1 - m a d - - b u n n - y
S2 b - a d m o - - - n e y

Note, that only the matches are 
aligned, since this is the problem 
we are solving –

 

finding the 
longest sequence of matches

We don’t count the number of 
edit operations, since their cost 
in this model is 0



The LCS based similarity metric

S a c c c

S1 a c - c

S a - c c - - c

S2 a c c - t g c

The longer is the LCS, the more similar are the strings

The LCS alone is not sufficient similarity metric

In these 2 examples, the LCS of S and S1 is the same as the LCS of S 
and S2, but it is intuitively clear that S is more similar to S1

 

than to S2, 
since they have more different characters

We want to score both the matches and the differences



Basic optimal alignment 
scores

S2 t g c a t a
S1

a
t
c
t
g
a
t

Let us set the simplest weights of the 
edges:

For a match: award of 1

For a mismatch: penalty of -1

For a gap: penalty of -1

Then the maximum cost of the path in 
the edit graph will give a numerical 
score of the similarity between S1 and 
S2: large positive values –

 

two strings 
are similar, negative or low positive 
values –

 

the strings are different

1-1 0

-1

-1



Optimal alignment. Base condition

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6
a -1
t -2
c -3
t -4
g -5
a -6
t -7

Since moving from point (0,0) 
strictly to the right or to the bottom 
corresponds to a series of gaps, 
we initialize the 0-column and 0-

 
row with consecutive negative 
integers

1-1 0

-1

-1



Optimal alignment. 
Recurrence relation

COST(i-1,j) -

 

1

COST(i,j)=max COST(i,j-1) -

 

1

COST(i-1,j-1)+diagonal(i,j)

1 if S1[i]=S2[j]

diagonal(i,j)= 

-1 if S1[i]≠S2[j]



Optimal alignment. Row 1

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6
a -1 -1 -2 -3 -2 -3 -2
t -2
c -3
t -4
g -5
a -6
t -7

1-1 0

-1

-1



Optimal alignment. Row 2

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3
t -4
g -5

a -6
t -7

1-1 0

-1

-1



Optimal alignment. Row 3

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4

g -5

a -6

t -7

1-1 0

-1

-1



Optimal alignment. Row 4

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2
t -2 0 -1 -2 -3 -1 -2
c -3 -1 -1 0 -1 -2 -2

t -4 0 -1 -1 -1 0 -1
g -5
a -6

t -7

1-1 0

-1

-1



Optimal alignment. Row 5

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6
a -1 -1 -2 -3 -2 -3 -2
t -2 0 -1 -2 -3 -1 -2
c -3 -1 -1 0 -1 -2 -2
t -4 -2 -1 -1 -1 0 -1
g -5 -1 -1 -2 -2 -1 -1
a -6
t -7

1-1 0

-1

-1



Optimal alignment. Rows 6,7

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6
a -1 -1 -2 -3 -2 -3 -2
t -2 0 -1 -2 -3 -1 -2
c -3 -1 -1 0 -1 -2 -2
t -4 -2 -1 -1 -1 0 -1
g -5 -1 -1 -2 -2 -1 -1
a -6 -2 -2 -2 -1 -2 0
t -7 -3 -3 -3 -2 0 -1

1-1 0

-1

-1



Optimal alignment. Traceback

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2
t -4 -2 -1 -1 -1 0 -1
g -5 -1 -1 -2 -2 -1 -1

a -6 -2 -2 -2 -1 -2 0
t -7 -3 -3 -3 -2 0 -1



Optimal alignment. Alignment
S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6
a -1 -1 -2 -3 -2 -3 -2
t -2 0 -1 -2 -3 -1 -2
c -3 -1 -1 0 -1 -2 -2
t -4 -2 -1 -1 -1 0 -1
g -5 -1 -1 -2 -2 -1 -1
a -6 -2 -2 -2 -1 -2 0
t -7 -3 -3 -3 -2 0 -1

S1 a t c t g - a t -
S2 - t - - g c a t a



General scoring schemes

COST(i-1,j) + gapCost

COST(i,j)=max COST(i,j-1) + gapCost

COST(i-1,j-1)+score(S1[i], S2[j])

Here the gapCost is the cost of aligning each character with a 
gap, and it should be negative in order to penalize

score depends on the characters placed opposite to each 
other. It is always positive for a pair of matching characters

The total score is a summative score of aligning the characters 
in S1 and S2, maximized over all the combinations of possible 
alignments



The scoring matrix

S1 a t c t g - a t -

S2 - t - - g c a t a

-1 1 -1 -1 1 -1 1 1 -1

For an alphabet Σ

 

of size σ

 

add one more artificial 
character ‘-’.

Then the scoring matrix is a (σ+1)*(σ+1) table, 
where for each character of Σ

 

plus ‘-’

 

there is a cost 
of aligning this character with each other character.

If an optimal alignment has been computed 
according to a given scoring matrix, the total score 
of an alignment is the sum of scores of the columns 
of an alignment table

Total score is -1

a c g t -
a 1 -1 -1 -1 -1
c -1 1 -1 -1 -1
g -1 -1 1 -1 -1
t -1 -1 -1 1 -1
- -1 -1 -1 -1 n/a

Our scoring matrix



The sequence of mutations
S1 a t c t g - a t -

S2 - t - - c c a t a

This alignment suggests that S1 was transformed into S2 by the following 
sequence of evolutionary events:

Deletion of nucleotide a

Deletion of nucleotides c and t

Substitution of nucleotide g by c

Insertion of nucleotide c

Deletion of nucleotide a

Since an optimal alignment is not unique, this sequence of mutations is only one of 
many possible explanations



Mutations

Mutagenesis (causes of mutations)

Wrong base-pairing during replication - point
Damage from the environmental agents - point
Unequal crossing-over - macromutations
Insertions from mobile genes (transposons) –
macromutations

Point mutations can be as deleterious as the 
macromutations, since they can break the reading frame 
or introduce a stop codon in the middle of the reading 
frame

YOU ARE THE TOP DOG YOU ARE THE POP DOG

YOO UAR ETH ETO PDO



Mutations
Regulatory mechanisms of DNA repair try to undo 
the mutations

Despite this, all cells possess a spontaneous 
mutation rate defined as a number of mutations 
which normally occur in each genome over a 
particular time

This allows to infere the evolutionary distance 
between species diverged from a common ancestor



Some mutations are more 
likely than the others

More 
likely

More 
likely



The first scoring matrix for a real 
DNA

a c g t -

a 3 0 2 0 -1

c 0 3 0 2 -1

g 2 0 3 0 -1

t 0 2 0 3 -1

- -1 -1 -1 -1

A, G –

 

2-ring bases

T, C –

 

1-ring bases

Mutation which preserves rings number is much 
more likely than changing the number of rings.

The score of exact matches: + 3

The score of transitions A->G, G->A and T->C, 
C->A: + 2

The score of any other mismatch (transversions) 
is 0



Gaps
The deletion or insertion of a single nucleotide is 
often called indel (insertion/deletion)

In real molecular life, the insertions/ deletions occur 
in a consecutive block, rather than at the level of 
single nucleotides
The deletion/insertion of an entire substring occurs 
as a single mutational event 

The sequence of consecutive insertions/deletions is 
called a gap



Scoring gaps
Each row represents a part of the genomic sequence of a different strain 
of HIV virus. 3 bottom rows represent mutated genotypes with an 
ancestral sequence in the top row. 

How many evolutionary events did really occur in each of these 3

 

cases?



Scoring gaps

An optimal alignment of two biological 
sequences is intended to reflect the likelihood 
of mutational events.
Since a gap of more than 1 space can be 
created by a single mutational event, the 
alignment model should reflect the true 
distribution of indels in gaps, not merely the 
number of indels in an alignment



Scoring gaps

Constant gap weights
Give score -1 for each gap independently of its length

Affine gap weights
Give score ρ + μ M for a gap of length M
ρ is comparatively large (for example, -1)
μ is comparatively small (for example -0.01)

In this way we count each gap as a single mutational 
event, but we take into account that longer gaps are less 
likely to occur than the shorter gaps



The recurrence relation for 
affine gap weights

COST(i-1,j) -0.01

COST(i,j)=max

COST(i-1,j) -

 

1 -

 

0.01

COST(i,j-1) -0.01

COST(i,j)=max

COST(i,j-1) -

 

1 -

 

0.01

When we compute the cost of 
moving from the top, we 
distinguish 2 cases: 

1.

 

if the top character was 
already a part of a gap, we 
just penalize for the 
extension of the gap.

2.

 

Otherwise, we penalize for 
the opening of a new gap of 
length1

The same when computing the 
cost of moving from the left 
to the current cell 



The recurrence relation for 
affine gap weights

COST(i,j)   = COST(i-1,j-1) + score(S1[i], S2[j]) 

COST(i,j)

COST(i,j)=max COST(i,j)

COST(i,j)

When computing the 
cost of moving from a 
diagonal cell, 

we account only for a 
score of aligning 
characters at current 
positions S1[i] and 
S2[j], as we did before

Then we take the max 
of these 3 values 



Optimal alignment with affine gap 
weights and the DNA scoring matrix

S2 t g c a t a

S1 0

a

t

c

t

g

a

t

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine



Optimal alignment with affine gap weights and 
the DNA scoring matrix. Base condition

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01

t -1.02

c -1.03

t -1.04

g -1.05

a -1.06

t -1.07

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine



Optimal alignment with affine gap weights and 
the DNA scoring matrix. Row 1

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02

c -1.03

t -1.04

g -1.05

a -1.06

t -1.07

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine



Optimal alignment with affine gap weights and 
the DNA scoring matrix. Row 2

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03

t -1.04

g -1.05

a -1.06

t -1.07

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine



Optimal alignment with affine gap weights and 
the DNA scoring matrix. Row 3

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03 0.88 1.99 3.98 2.97 3.98 4.97

t -1.04

g -1.05

a -1.06

t -1.07



Optimal alignment with affine gap weights and 
the DNA scoring matrix. Rows 4,5

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03 0.88 1.99 3.98 2.97 3.98 4.97

t -1.04 1.97 0.98 3.99 3.98 5.97 4.96

g -1.05 0.96 4.97 3.96 5.99 4.98 7.97

a -1.06

t -1.07



Optimal alignment with affine gap weights and 
the DNA scoring matrix. Rows 6,7

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03 0.88 1.99 3.98 2.97 3.98 4.97

t -1.04 1.97 0.98 3.99 3.98 5.97 4.96

g -1.05 0.96 4.97 3.96 5.99 4.98 7.97

a -1.06 -0.14 3.96 4.97 6.96 5.99 7.98

t -1.07 1.94 2.95 5.96 5.95 9.96 8.95



Optimal alignment with affine gap weights and 
the DNA scoring matrix. Row 7

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 0.99 0.96 4.97 3.96

c -1.03 0.98 1.99 4.98 3.97 3.96 4.97

t -1.04 1.97 0.98 3.99 4.98 6.97 5.96

g -1.05 0.96 4.97 3.96 5.99 5.96 8.97

a -1.06 0.95 3.96 4.97 6.96 5.99 8.96

t -1.07 1.94 3.95 5.96 5.95 9.96 8.95

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine



Optimal alignment with affine gap weights and 
the DNA scoring matrix. Traceback

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 0.99 0.96 4.97 3.96

c -1.03 0.98 1.99 4.98 3.97 3.96 4.97

t -1.04 1.97 0.98 3.99 4.98 6.97 5.96

g -1.05 0.96 4.97 3.96 5.99 5.96 8.97

a -1.06 0.95 3.96 4.97 6.96 5.99 8.96

t -1.07 1.94 3.95 5.96 5.95 9.96 8.95



The global alignment

S1 a t c t g - a t -
S2 - - - t g c a t a

This alignment is called 
global since it 
represents an 
alignment with the best 
overall cost for entire 
strings S1 and S2

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 0.99 0.96 4.97 3.96

c -1.03 0.98 1.99 4.98 3.97 3.96 4.97

t -1.04 1.97 0.98 3.99 4.98 6.97 5.96

g -1.05 0.96 4.97 3.96 5.99 5.96 8.97

a -1.06 0.95 3.96 4.97 6.96 5.99 8.96

t -1.07 1.94 3.95 5.96 5.95 9.96 8.95



The local alignment

The similarity of biological strings rarely 
extends through the entire length of these 
strings
Example: homeodomain of the homeobox
genes is a very conserved substring in overall 
very different sequences

How to detect the regions of local similarity?



The local alignment problem

Find a pair (S1[i1…i2], S2[j1…j2]) of substrings of S1 
and S2 such that the global alignment score between 
these substrings is maximal among all possible pairs of 
substrings of S1 and S2

In terms of paths, find the path with the best cost 
between any pair of vertices



The solution to the local alignment 
problem. Simple scoring example

S2 t g c a t a
S1

a
t
c
t
g
a
t

1-1 0

-1

-1

When choosing the best move through 
the next cell, take into account an 
additional possibility to start from vertex 
(0,0) with an overall 0-cost

This means that if the cost of some path 
drops below 0, we abandon this path 
and restart the cost to find a better local 
path starting from the current position. 

0

0



The local alignment. Base 
condition

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0
t 0
c 0
t 0
g 0
a 0
t 0

1-1 0

-1

-1



The local alignment. 
Recurrence relation

0

COST(i-1,j) + gapCost

COST(i,j)=max COST(i,j-1) + gapCost

COST(i-1,j-1)+score(S1[i], S2[j])

The cost never drops below 0. if it is negative, we start a new 
path from the same point with a cost 0



The local alignment. Row 1

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0
c 0
t 0
g 0
a 0
t 0

1-1 0

-1

-1



The local alignment. Row 2

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0
t 0
g 0
a 0
t 0

1-1 0

-1

-1



The local alignment. Row 3

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0 0 0 1 0 1 1
t 0
g 0
a 0
t 0

1-1 0

-1

-1



The local alignment. Row 4

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0 0 0 1 0 1 1
t 0 1 0 0 0 1 0
g 0
a 0
t 0

1-1 0

-1

-1



The local alignment. Row 5

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0 0 0 1 0 1 1
t 0 1 0 0 0 1 0
g 0 0 2 1 0 0 0
a 0
t 0

1-1 0

-1

-1



The local alignment. Row 6

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0 0 0 1 0 1 1
t 0 1 0 0 0 1 0
g 0 0 2 1 0 0 0
a 0 0 1 1 2 1 1
t 0

1-1 0

-1

-1



The local alignment. Row 7

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0 0 0 1 0 1 1
t 0 1 0 0 0 1 0
g 0 0 2 1 0 0 0
a 0 0 1 1 2 1 1
t 0 1 0 0 1 3 2

1-1 0

-1

-1



The local alignment. Alignment
S2 t g c a t a

S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0 0 0 1 0 1 1
t 0 1 0 0 0 1 0
g 0 0 2 1 0 0 0
a 0 0 1 1 2 1 1
t 0 1 0 0 1 3 2

S1 a t c t g - a t -
S2 - - - t g c a t a



The local alignment. Running 
time

O(NM)
If we want to find the regions of high similarity between a new 
sequence of size M and all G genes of size N each in the 
database, we need to perform O(MNG) operations
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