
String similarity and
alignments

Lecture 7

The edit-distance based similarity
metric

S a c c g c
S1 a c t c

S a c c g c

S2 a c c c t g c

The smaller is the edit distance, the larger is the similarity

The edit distance alone is not always sufficient metric to characterize
similarity between strings

In these 2 examples, the edit distance between S and S1 is the same
as an edit distance between S and S2, but it is intuitively clear that S is
more similar to S2 than to S1, since they share more identical
characters

We want to evaluate what was preserved rather than what changed to
infer the common pattern

The longest common
substring

The longest substring, common to both strings,
the longest sequence of consecutive
characters which occur in both strings

The longest sequence of consecutive matches

The linear-time solution via suffix tree

The longest common
subsequence

A subsequence of a string S is a subset of
characters of S in their original relative order

A subsequence does not need to consist of the
consecutive characters of S

Given 2 strings S1 and S2, a common
subsequence for 2 strings is a subsequence which
appears both in S1 and S2

The longest common subsequence is a longest
between all possible subsequences of S1 and S2

Substring vs subsequence

w i n t e r s

w i n t e r s

w i n t e r s

its –

a subsequence of winters

inter –

both substring and subsequence of
winters

Longest Common Subsequence
(LCS)

m a d b u n n y

b a d m o n e y

m a d b u n n y

b a d m o n e y

How can we be sure that adny is the longest common subsequence

The Dynamic Programming
solution for LCS. Edit graph

b a d m o n e y
0

m
a
d
b
u
n
n
y

Since we are interested in a
longest sequence of matches,
we give to the red edges cost 1
and to all the other edges cost 0

Since aligning 2 different
characters does not contribute
to the total score we do not
consider the diagonal edges in
case of mismatch

1

0

0 0

0

The Dynamic Programming solution
for LCS. The greediest path

The problem can be
reduced to finding the
greediest (the longest)
path through matches -

the path with the largest
cost

1

0

0 0

0

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0
a 0
d 0
b 0
u 0
n 0
n 0
y 0

Base condition

All the black edges are of
cost 0, so moving strictly
right or down gives paths
of a total cost 0

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0
a 0
d 0
b 0
u 0
n 0
n 0
y 0

LCS. Recurrence relation

COST(i-1,j)

COST(i,j)=max COST(i,j-1)

COST(i-1,j-1)+1 if S1[i]=S2[j]

Tabular computation. Row 1

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0

b 0

u 0

n 0

n 0

y 0

Tabular computation. Row 2

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1
a 0 0 1 1 1 1 1 1 1
d 0
b 0
u 0
n 0
n 0
y 0

Alternative path

Tabular computation. Row 3

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1
a 0 0 1 1 1 1 1 1 1
d 0 0 1 2 2 2 2 2 2
b 0
u 0
n 0
n 0
y 0

Tabular computation. Row 4

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1
a 0 0 1 1 1 1 1 1 1
d 0 0 1 2 2 2 2 2 2
b 0 1 1 2 2 2 2 2 2
u 0
n 0
n 0
y 0

Tabular computation. Rows 5,6z

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1
a 0 0 1 1 1 1 1 1 1
d 0 0 1 2 2 2 2 2 2
b 0 1 1 2 2 2 2 2 2
u 0 1 1 2 2 2 2 2 2
n 0 1 1 2 2 2 3 3 3
n 0
y 0

Tabular computation. Rows 7,8

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1
a 0 0 1 1 1 1 1 1 1
d 0 0 1 2 2 2 2 2 2
b 0 1 1 2 2 2 2 2 2
u 0 1 1 2 2 2 2 2 2
n 0 1 1 2 2 2 3 3 3
n 0 1 1 2 2 2 3 3 3
y 0 1 1 2 2 2 3 3 4

Read the length of the
longest common
subsequence in cell [N][M]

LCS. Traceback

j

i

b a d m o n e y
0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1
a 0 0 1 1 1 1 1 1 1
d 0 0 1 2 2 2 2 2 2
b 0 1 1 2 2 2 2 2 2
u 0 1 1 2 2 2 2 2 2
n 0 1 1 2 2 2 3 3 3
n 0 1 1 2 2 2 3 3 3
y 0 1 1 2 2 2 3 3 4

Find the subsequence
itself following the
sequence of matches
backwards

LCS. Alignment
b a d m o n e y

0 0 0 0 0 0 0 0 0
m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1
d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2
u 0 1 1 2 2 2 2 2 2
n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3
y 0 1 1 2 2 2 3 3 4

j

i S1 - m a d - - b u n n - y
S2 b - a d m o - - - n e y

Note, that only the matches are
aligned, since this is the problem
we are solving –

finding the
longest sequence of matches

We don’t count the number of
edit operations, since their cost
in this model is 0

The LCS based similarity metric

S a c c c

S1 a c - c

S a - c c - - c

S2 a c c - t g c

The longer is the LCS, the more similar are the strings

The LCS alone is not sufficient similarity metric

In these 2 examples, the LCS of S and S1 is the same as the LCS of S
and S2, but it is intuitively clear that S is more similar to S1

than to S2,
since they have more different characters

We want to score both the matches and the differences

Basic optimal alignment
scores

S2 t g c a t a
S1

a
t
c
t
g
a
t

Let us set the simplest weights of the
edges:

For a match: award of 1

For a mismatch: penalty of -1

For a gap: penalty of -1

Then the maximum cost of the path in
the edit graph will give a numerical
score of the similarity between S1 and
S2: large positive values –

two strings
are similar, negative or low positive
values –

the strings are different

1-1 0

-1

-1

Optimal alignment. Base condition

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6
a -1
t -2
c -3
t -4
g -5
a -6
t -7

Since moving from point (0,0)
strictly to the right or to the bottom
corresponds to a series of gaps,
we initialize the 0-column and 0-

row with consecutive negative
integers

1-1 0

-1

-1

Optimal alignment.
Recurrence relation

COST(i-1,j) -

1

COST(i,j)=max COST(i,j-1) -

1

COST(i-1,j-1)+diagonal(i,j)

1 if S1[i]=S2[j]

diagonal(i,j)=

-1 if S1[i]≠S2[j]

Optimal alignment. Row 1

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6
a -1 -1 -2 -3 -2 -3 -2
t -2
c -3
t -4
g -5
a -6
t -7

1-1 0

-1

-1

Optimal alignment. Row 2

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3
t -4
g -5

a -6
t -7

1-1 0

-1

-1

Optimal alignment. Row 3

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2

t -4

g -5

a -6

t -7

1-1 0

-1

-1

Optimal alignment. Row 4

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2
t -2 0 -1 -2 -3 -1 -2
c -3 -1 -1 0 -1 -2 -2

t -4 0 -1 -1 -1 0 -1
g -5
a -6

t -7

1-1 0

-1

-1

Optimal alignment. Row 5

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6
a -1 -1 -2 -3 -2 -3 -2
t -2 0 -1 -2 -3 -1 -2
c -3 -1 -1 0 -1 -2 -2
t -4 -2 -1 -1 -1 0 -1
g -5 -1 -1 -2 -2 -1 -1
a -6
t -7

1-1 0

-1

-1

Optimal alignment. Rows 6,7

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6
a -1 -1 -2 -3 -2 -3 -2
t -2 0 -1 -2 -3 -1 -2
c -3 -1 -1 0 -1 -2 -2
t -4 -2 -1 -1 -1 0 -1
g -5 -1 -1 -2 -2 -1 -1
a -6 -2 -2 -2 -1 -2 0
t -7 -3 -3 -3 -2 0 -1

1-1 0

-1

-1

Optimal alignment. Traceback

S2 t g c a t a
S1 0 -1 -2 -3 -4 -5 -6

a -1 -1 -2 -3 -2 -3 -2

t -2 0 -1 -2 -3 -1 -2

c -3 -1 -1 0 -1 -2 -2
t -4 -2 -1 -1 -1 0 -1
g -5 -1 -1 -2 -2 -1 -1

a -6 -2 -2 -2 -1 -2 0
t -7 -3 -3 -3 -2 0 -1

Optimal alignment. Alignment
S2 t g c a t a

S1 0 -1 -2 -3 -4 -5 -6
a -1 -1 -2 -3 -2 -3 -2
t -2 0 -1 -2 -3 -1 -2
c -3 -1 -1 0 -1 -2 -2
t -4 -2 -1 -1 -1 0 -1
g -5 -1 -1 -2 -2 -1 -1
a -6 -2 -2 -2 -1 -2 0
t -7 -3 -3 -3 -2 0 -1

S1 a t c t g - a t -
S2 - t - - g c a t a

General scoring schemes

COST(i-1,j) + gapCost

COST(i,j)=max COST(i,j-1) + gapCost

COST(i-1,j-1)+score(S1[i], S2[j])

Here the gapCost is the cost of aligning each character with a
gap, and it should be negative in order to penalize

score depends on the characters placed opposite to each
other. It is always positive for a pair of matching characters

The total score is a summative score of aligning the characters
in S1 and S2, maximized over all the combinations of possible
alignments

The scoring matrix

S1 a t c t g - a t -

S2 - t - - g c a t a

-1 1 -1 -1 1 -1 1 1 -1

For an alphabet Σ

of size σ

add one more artificial
character ‘-’.

Then the scoring matrix is a (σ+1)*(σ+1) table,
where for each character of Σ

plus ‘-’

there is a cost
of aligning this character with each other character.

If an optimal alignment has been computed
according to a given scoring matrix, the total score
of an alignment is the sum of scores of the columns
of an alignment table

Total score is -1

a c g t -
a 1 -1 -1 -1 -1
c -1 1 -1 -1 -1
g -1 -1 1 -1 -1
t -1 -1 -1 1 -1
- -1 -1 -1 -1 n/a

Our scoring matrix

The sequence of mutations
S1 a t c t g - a t -

S2 - t - - c c a t a

This alignment suggests that S1 was transformed into S2 by the following
sequence of evolutionary events:

Deletion of nucleotide a

Deletion of nucleotides c and t

Substitution of nucleotide g by c

Insertion of nucleotide c

Deletion of nucleotide a

Since an optimal alignment is not unique, this sequence of mutations is only one of
many possible explanations

Mutations

Mutagenesis (causes of mutations)

Wrong base-pairing during replication - point
Damage from the environmental agents - point
Unequal crossing-over - macromutations
Insertions from mobile genes (transposons) –
macromutations

Point mutations can be as deleterious as the
macromutations, since they can break the reading frame
or introduce a stop codon in the middle of the reading
frame

YOU ARE THE TOP DOG YOU ARE THE POP DOG

YOO UAR ETH ETO PDO

Mutations
Regulatory mechanisms of DNA repair try to undo
the mutations

Despite this, all cells possess a spontaneous
mutation rate defined as a number of mutations
which normally occur in each genome over a
particular time

This allows to infere the evolutionary distance
between species diverged from a common ancestor

Some mutations are more
likely than the others

More
likely

More
likely

The first scoring matrix for a real
DNA

a c g t -

a 3 0 2 0 -1

c 0 3 0 2 -1

g 2 0 3 0 -1

t 0 2 0 3 -1

- -1 -1 -1 -1

A, G –

2-ring bases

T, C –

1-ring bases

Mutation which preserves rings number is much
more likely than changing the number of rings.

The score of exact matches: + 3

The score of transitions A->G, G->A and T->C,
C->A: + 2

The score of any other mismatch (transversions)
is 0

Gaps
The deletion or insertion of a single nucleotide is
often called indel (insertion/deletion)

In real molecular life, the insertions/ deletions occur
in a consecutive block, rather than at the level of
single nucleotides
The deletion/insertion of an entire substring occurs
as a single mutational event

The sequence of consecutive insertions/deletions is
called a gap

Scoring gaps
Each row represents a part of the genomic sequence of a different strain
of HIV virus. 3 bottom rows represent mutated genotypes with an
ancestral sequence in the top row.

How many evolutionary events did really occur in each of these 3

cases?

Scoring gaps

An optimal alignment of two biological
sequences is intended to reflect the likelihood
of mutational events.
Since a gap of more than 1 space can be
created by a single mutational event, the
alignment model should reflect the true
distribution of indels in gaps, not merely the
number of indels in an alignment

Scoring gaps

Constant gap weights
Give score -1 for each gap independently of its length

Affine gap weights
Give score ρ + μ M for a gap of length M
ρ is comparatively large (for example, -1)
μ is comparatively small (for example -0.01)

In this way we count each gap as a single mutational
event, but we take into account that longer gaps are less
likely to occur than the shorter gaps

The recurrence relation for
affine gap weights

COST(i-1,j) -0.01

COST(i,j)=max

COST(i-1,j) -

1 -

0.01

COST(i,j-1) -0.01

COST(i,j)=max

COST(i,j-1) -

1 -

0.01

When we compute the cost of
moving from the top, we
distinguish 2 cases:

1.

if the top character was
already a part of a gap, we
just penalize for the
extension of the gap.

2.

Otherwise, we penalize for
the opening of a new gap of
length1

The same when computing the
cost of moving from the left
to the current cell

The recurrence relation for
affine gap weights

COST(i,j) = COST(i-1,j-1) + score(S1[i], S2[j])

COST(i,j)

COST(i,j)=max COST(i,j)

COST(i,j)

When computing the
cost of moving from a
diagonal cell,

we account only for a
score of aligning
characters at current
positions S1[i] and
S2[j], as we did before

Then we take the max
of these 3 values

Optimal alignment with affine gap
weights and the DNA scoring matrix

S2 t g c a t a

S1 0

a

t

c

t

g

a

t

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine

Optimal alignment with affine gap weights and
the DNA scoring matrix. Base condition

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01

t -1.02

c -1.03

t -1.04

g -1.05

a -1.06

t -1.07

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine

Optimal alignment with affine gap weights and
the DNA scoring matrix. Row 1

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02

c -1.03

t -1.04

g -1.05

a -1.06

t -1.07

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine

Optimal alignment with affine gap weights and
the DNA scoring matrix. Row 2

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03

t -1.04

g -1.05

a -1.06

t -1.07

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine

Optimal alignment with affine gap weights and
the DNA scoring matrix. Row 3

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03 0.88 1.99 3.98 2.97 3.98 4.97

t -1.04

g -1.05

a -1.06

t -1.07

Optimal alignment with affine gap weights and
the DNA scoring matrix. Rows 4,5

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03 0.88 1.99 3.98 2.97 3.98 4.97

t -1.04 1.97 0.98 3.99 3.98 5.97 4.96

g -1.05 0.96 4.97 3.96 5.99 4.98 7.97

a -1.06

t -1.07

Optimal alignment with affine gap weights and
the DNA scoring matrix. Rows 6,7

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 2.99 1.98 4.97 3.96

c -1.03 0.88 1.99 3.98 2.97 3.98 4.97

t -1.04 1.97 0.98 3.99 3.98 5.97 4.96

g -1.05 0.96 4.97 3.96 5.99 4.98 7.97

a -1.06 -0.14 3.96 4.97 6.96 5.99 7.98

t -1.07 1.94 2.95 5.96 5.95 9.96 8.95

Optimal alignment with affine gap weights and
the DNA scoring matrix. Row 7

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 0.99 0.96 4.97 3.96

c -1.03 0.98 1.99 4.98 3.97 3.96 4.97

t -1.04 1.97 0.98 3.99 4.98 6.97 5.96

g -1.05 0.96 4.97 3.96 5.99 5.96 8.97

a -1.06 0.95 3.96 4.97 6.96 5.99 8.96

t -1.07 1.94 3.95 5.96 5.95 9.96 8.95

0a

c

2a

g

0a

t

0c

g

2c

t

0g

t

3

char

char

affine

Optimal alignment with affine gap weights and
the DNA scoring matrix. Traceback

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 0.99 0.96 4.97 3.96

c -1.03 0.98 1.99 4.98 3.97 3.96 4.97

t -1.04 1.97 0.98 3.99 4.98 6.97 5.96

g -1.05 0.96 4.97 3.96 5.99 5.96 8.97

a -1.06 0.95 3.96 4.97 6.96 5.99 8.96

t -1.07 1.94 3.95 5.96 5.95 9.96 8.95

The global alignment

S1 a t c t g - a t -
S2 - - - t g c a t a

This alignment is called
global since it
represents an
alignment with the best
overall cost for entire
strings S1 and S2

S2 t g c a t a

S1 0 -1.01 -1.02 -1.03 -1.04 -1.05 -1.06

a -1.01 0 0.99 -0.02 1.97 0.96 1.95

t -1.02 1.99 0.98 0.99 0.96 4.97 3.96

c -1.03 0.98 1.99 4.98 3.97 3.96 4.97

t -1.04 1.97 0.98 3.99 4.98 6.97 5.96

g -1.05 0.96 4.97 3.96 5.99 5.96 8.97

a -1.06 0.95 3.96 4.97 6.96 5.99 8.96

t -1.07 1.94 3.95 5.96 5.95 9.96 8.95

The local alignment

The similarity of biological strings rarely
extends through the entire length of these
strings
Example: homeodomain of the homeobox
genes is a very conserved substring in overall
very different sequences

How to detect the regions of local similarity?

The local alignment problem

Find a pair (S1[i1…i2], S2[j1…j2]) of substrings of S1
and S2 such that the global alignment score between
these substrings is maximal among all possible pairs of
substrings of S1 and S2

In terms of paths, find the path with the best cost
between any pair of vertices

The solution to the local alignment
problem. Simple scoring example

S2 t g c a t a
S1

a
t
c
t
g
a
t

1-1 0

-1

-1

When choosing the best move through
the next cell, take into account an
additional possibility to start from vertex
(0,0) with an overall 0-cost

This means that if the cost of some path
drops below 0, we abandon this path
and restart the cost to find a better local
path starting from the current position.

0

0

The local alignment. Base
condition

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0
t 0
c 0
t 0
g 0
a 0
t 0

1-1 0

-1

-1

The local alignment.
Recurrence relation

0

COST(i-1,j) + gapCost

COST(i,j)=max COST(i,j-1) + gapCost

COST(i-1,j-1)+score(S1[i], S2[j])

The cost never drops below 0. if it is negative, we start a new
path from the same point with a cost 0

The local alignment. Row 1

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0
c 0
t 0
g 0
a 0
t 0

1-1 0

-1

-1

The local alignment. Row 2

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0
t 0
g 0
a 0
t 0

1-1 0

-1

-1

The local alignment. Row 3

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0 0 0 1 0 1 1
t 0
g 0
a 0
t 0

1-1 0

-1

-1

The local alignment. Row 4

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0 0 0 1 0 1 1
t 0 1 0 0 0 1 0
g 0
a 0
t 0

1-1 0

-1

-1

The local alignment. Row 5

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0 0 0 1 0 1 1
t 0 1 0 0 0 1 0
g 0 0 2 1 0 0 0
a 0
t 0

1-1 0

-1

-1

The local alignment. Row 6

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0 0 0 1 0 1 1
t 0 1 0 0 0 1 0
g 0 0 2 1 0 0 0
a 0 0 1 1 2 1 1
t 0

1-1 0

-1

-1

The local alignment. Row 7

S2 t g c a t a
S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0 0 0 1 0 1 1
t 0 1 0 0 0 1 0
g 0 0 2 1 0 0 0
a 0 0 1 1 2 1 1
t 0 1 0 0 1 3 2

1-1 0

-1

-1

The local alignment. Alignment
S2 t g c a t a

S1 0 0 0 0 0 0 0
a 0 0 0 0 1 0 1
t 0 1 0 0 0 2 0
c 0 0 0 1 0 1 1
t 0 1 0 0 0 1 0
g 0 0 2 1 0 0 0
a 0 0 1 1 2 1 1
t 0 1 0 0 1 3 2

S1 a t c t g - a t -
S2 - - - t g c a t a

The local alignment. Running
time

O(NM)
If we want to find the regions of high similarity between a new
sequence of size M and all G genes of size N each in the
database, we need to perform O(MNG) operations

	String similarity and alignments
	The edit-distance based similarity metric
	The longest common substring
	The longest common subsequence
	Substring vs subsequence
	Longest Common Subsequence (LCS)
	The Dynamic Programming solution for LCS. Edit graph
	The Dynamic Programming solution for LCS. The greediest path
	Base condition
	LCS. Recurrence relation
	Tabular computation. Row 1
	Tabular computation. Row 2
	Tabular computation. Row 3
	Tabular computation. Row 4
	Tabular computation. Rows 5,6z
	Tabular computation. Rows 7,8
	LCS. Traceback
	LCS. Alignment
	The LCS based similarity metric
	Basic optimal alignment scores
	Optimal alignment. Base condition
	Optimal alignment. �Recurrence relation
	Optimal alignment. Row 1
	Optimal alignment. Row 2
	Optimal alignment. Row 3
	Optimal alignment. Row 4
	Optimal alignment. Row 5
	Optimal alignment. Rows 6,7
	Optimal alignment. Traceback
	Optimal alignment. Alignment
	General scoring schemes
	The scoring matrix
	The sequence of mutations
	Mutations
	Mutations
	Some mutations are more likely than the others
	The first scoring matrix for a real DNA
	Gaps
	Scoring gaps
	Scoring gaps
	Scoring gaps
	The recurrence relation for affine gap weights
	The recurrence relation for affine gap weights
	Optimal alignment with affine gap weights and the DNA scoring matrix
	Optimal alignment with affine gap weights and the DNA scoring matrix. Base condition
	Optimal alignment with affine gap weights and the DNA scoring matrix. Row 1
	Optimal alignment with affine gap weights and the DNA scoring matrix. Row 2
	Optimal alignment with affine gap weights and the DNA scoring matrix. Row 3
	Optimal alignment with affine gap weights and the DNA scoring matrix. Rows 4,5
	Optimal alignment with affine gap weights and the DNA scoring matrix. Rows 6,7
	Optimal alignment with affine gap weights and the DNA scoring matrix. Row 7
	Optimal alignment with affine gap weights and the DNA scoring matrix. Traceback
	The global alignment
	The local alignment
	The local alignment problem
	The solution to the local alignment problem. Simple scoring example
	The local alignment. Base condition
	The local alignment. Recurrence relation
	The local alignment. Row 1
	The local alignment. Row 2
	The local alignment. Row 3
	The local alignment. Row 4
	The local alignment. Row 5
	The local alignment. Row 6
	The local alignment. Row 7
	The local alignment. Alignment
	The local alignment. Running time

