Algorithms in Molecular Biology

Course Outline

Information

Lectures:

TWF 10:30 - 11:20 DSB C126

- Lecturers: Marina Barsky / Ulrike Stege
- Office hours:

TW, 2.00-3.30 PM ECS 617

E-mail: <u>mgbarsky@csc.uvic.ca</u> <u>ustege@csc.uvic.ca</u>

Site: <u>https://connex.csc.uvic.ca/portal/site/a31ada3d-7a2e-4a0c-936e-a93f672be3ce</u>

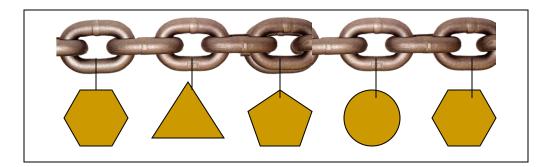
Requirements

- Assignments 40 %
- Midterm exams 30 %
- Project 30 %

Quzzes – 0.5% bonus each

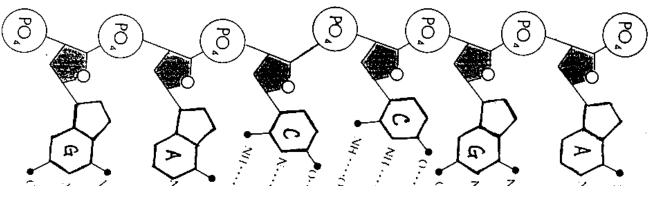
Background

- Main concepts of molecular biology
- Algorithms, data structures
- Probability theory


Algorithms in molecular biology. Bioinformatics algorithms

Molecular biology - definition

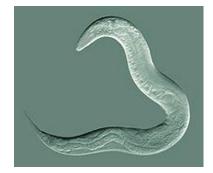
 Molecular biology considers living things in terms of chemical matter (molecules) and mechanisms


Macromolecules

The main molecules are DNA, RNA, and protein

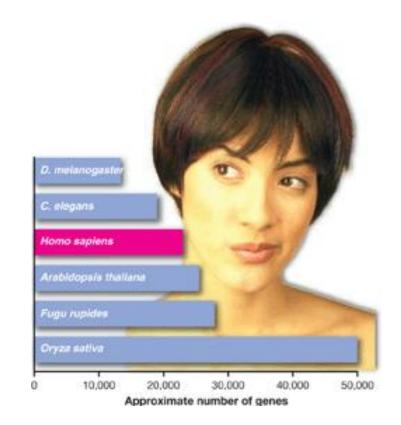
Bioinformatics - definition

- Applies concepts of *informatics* and *computer* science to the field of molecular biology – to extract new *knowledge* from the *information* encoded in biosequences
- Biosequence is an abstraction of ordered information encoded in macromolecules (nucleic acids and proteins)


G A C C G A

The objectives

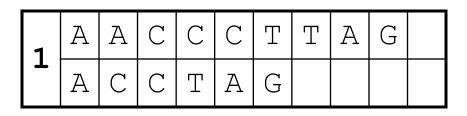
- To be familiar with the problems of the modern molecular biology
- To be able to identify which of these problems are computable
- To use algorithmic tools to solve these problems
- A side effect: understanding the ideas behind bioinformatics tools, i.e. *what* problem does the tool solve, and *how* it solves the problem.

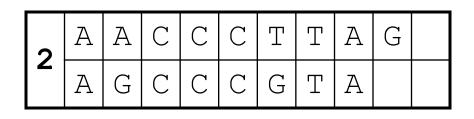

Example: how many genes are there?

 Estimated in 2001 count of human genes – 20,000 – 25,000 (the simple roundworm Caenorhabditis elegans has 20,000 genes, rice has 43,000 genes)

Example: how many genes are there?

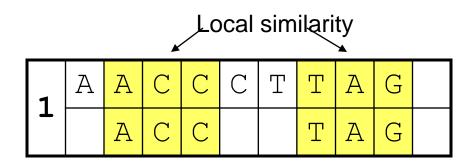
- Estimated in 2001 count of human genes – 20,000 – 25,000
- Others estimate as 65,000 -75,000 [<u>ref</u>]
 - Overestimate prediction based on the sequence itself (*ab initio*)
 - Underestimate based on the comparison with known genes
- Why human gene count is so low?




Sample Bioinformatics problem

Input:

- Query DNA sequence of an unknown gene:
 - AACCCTTAG
- The sequences of known genes:
 - ACCTAG
 - AGCCCGTA
 - AAGCCGCTTA
- Biological question: find among these sequences the most similar to the query sequence


What pair is the most similar?

3	А	А	С	С	С	Т	Т	А	G	
	А	Α	G	С	С	G	С	Т	Т	А

What pair is the most similar?

Overall (global) similarity

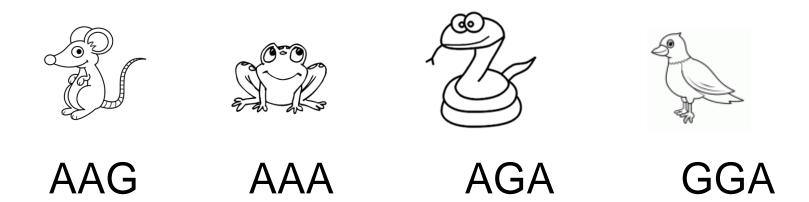
2	А	А	С	С	С	Т	Т	А	G	
Ζ	Α	G	С	С	С	G	Т	А		

Does the deletion of the symbols matter?

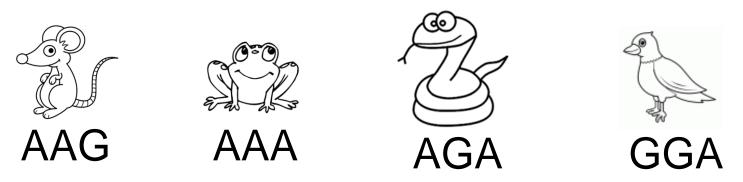
What pair is the most similar?

What if only $\ensuremath{\mathsf{ACC}}$ and $\ensuremath{\mathsf{TAG}}$ determine the shape

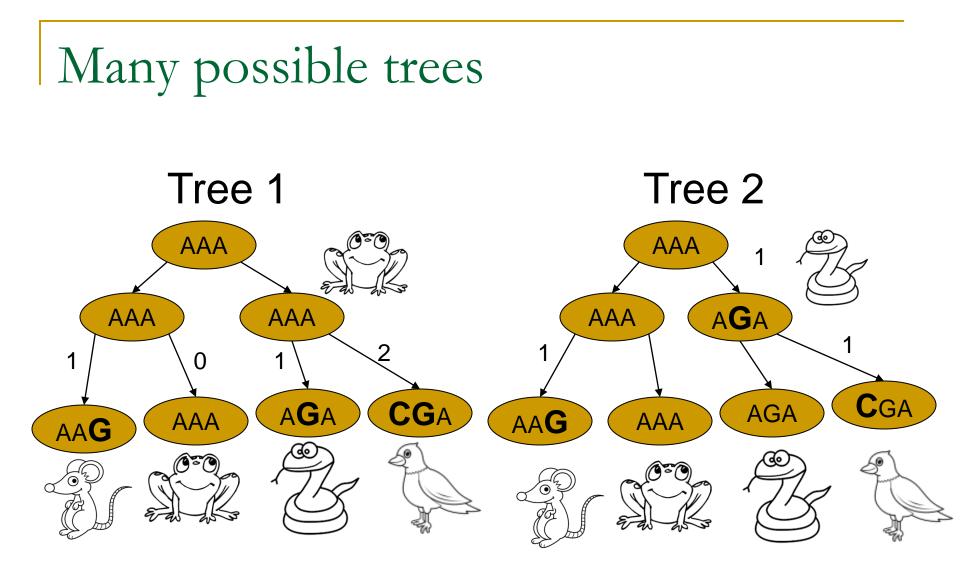
(therefore, the functionality) of the encoded protein?


S	А	А		С	С		С	Т	Т	Α	G
5	Α	A	G	С	С	G	С	Т	Т	Α	

Protocol of solving a bioinformatics problem


- 1. Biological question (find *similar* sequences)
- 2. Formalization (how to measure *similarity*)
- 3. An *efficient* algorithm to solve the *formalized* problem
- Model + learning to learn the parameters of an algorithm from real data
- Evaluation of results distinguish significant (statistically) results from artifacts
- 6. Presentation of the results

Another example


Input: four DNA sequences taken from four species.

Formalization

- I. Biological question: which evolutionary tree best explains these sequences ?
- 2. Formalization: what is the measure for the best tree?
- Let it be *the parsimony principle*: Pick a tree that has a minimum total number of symbol changes between species and their originator in the evolutionary tree.

Which tree is better by the parsimony principle?

Next steps

- 3. Efficient algorithm: how can we compute the best tree efficiently ?
- 4. Adjusting parameters from the data: A is more likely to be replaced by G or by T?
- 5. Significance: is the best tree found significantly (statistically) better than others ?
- 6. Present results as a tree
- The main question: does the tree make biological sense ?

The scope of the problems

- Sequence comparison
- Gene finding
- Sequence-based evolution
- Sequence folding
- Gene expression profiles

The scope of algorithms

- Discrete algorithms:
 - Combinatorial pattern matching
 - Dynamic programming
 - String automata
 - Graph algorithms
- Probabilistic models:
 - Hidden Markov Models
 - Maximum likelihood
 - Bayesian inference
- Hard problems:
 - Heuristics
 - Approximation algorithms

The closer look at the object of our study – molecules of life

- DNA
- RNA
- Proteins

Molecular Biology (Stanford Encyclopedia of Philosophy)

http://plato.stanford.edu/entries/molecular-biology/

Beginner's Guide to Molecular Biology

http://www.rothamsted.bbsrc.ac.uk/notebook/course s/guide/