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1 Introduction

This paper details our experiences with implementing a hierarchical clustering application.
We performed such work in the context of creating phylogeny trees for sets of biological data.
Hierarchical clustering is a method of grouping data points together such that elements that
are more similar to one another exist within the same cluster. The membership of each
cluster can provide large amounts of information depending on the problem domain. One
common problem domain is for the creation of phylogeny trees from computational biology.
A phylogeny tree is binary tree that charts the evolutionary distance between sets of genomic
sequences. Each bifurcation in the tree represents a evolutionary action which resulted in
the creation of two hosts that have similar, but distinct, genetic sequences. From a given
set of modern genomic sequences from many different hosts, creation of the phylogeny tree
attempts to trace back in time to determine how a particular genome sequence evolved over
time between the hosts.

The process for creating a phylogeny tree is compute a distance metric between all of the
modern sequences, then perform hierarchical clustering, and finally visualize the result. Each
of these steps depend on the output of the previous and all come with their own challenges,
algorithms and difficulties. We implemented all three steps and tested our implementation
on several genomic datasets. We leverage our knowledge of computer science to tackle each
of these steps due to the algorithmic nature of each step. By implementing the steps in a
computer, we can get results faster and possibly more accurately than by hand. Further
we can work on larger datasets on computers than we can by hand due to the speed of
computation provided by modern computational resources.

The rest of the paper is as follows, section 2 more formally introduces the biological
problem that we are attempting to solve and how computer science can help solve such a
problem. The methodology of our approach is explained in section 3, both from a com-
putational perspective and from a computational perspective. Analysis of our results and
methodology is provided in section 4. Section 5 looks at some further applications of hierar-
chical clustering both in the biological and computer science research communities. Finally,
section 6 provides concluding remarks and some suggestions for further work.

2 Problem

2.1 Biological Problem

The use of genomic research has changed how we trace and control epidemics. Our biological
problem is to trace how encephalitis came to North America during the recent epidemic
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outbreak. Encephalitis is the inflammation of the brain. This potentially-fatal disease is
commonly caused by viral infection. Severe cases of infection can cause permanent damage
to the central nervous system and death. However, in most cases, the mild form of infection
causes flu-like symptoms that lasts for 2-3 weeks. The causes of infection include Herpes
virus, the equine (meaning horse), West Nile, Japanese, La Crosse, and St. Louis encephalitis
viruses [6, 9, 10].

These viruses have different global distributions [10]. For example, before 1999, the West
Nile virus was limited to the Old World, and Japanese encephalitis was dominant in South-
east Asia. However, in August and September 1999, New York experienced an outbreak of
human encephalitis during which two people died. Meanwhile, some captive and wild birds
died too. Weeks later, RNA sequencing told us that the disease was caused by a form of the
West Nile virus [1].

The group of Encephalitis viruses (the equine, West Nile, Japanese, La Crosse, and St.
Louis encephalitis viruses) are all transmitted by mosquitoes. The viruses grow and cycle
between animal-hosts and mosquitoes [6, 9, 10, 1]. In an epidemic study, we want to know
how an Old World virus traveled to the New World: if the virus was in a human, an animal
such as a pet or an illegally smuggled exotic animal, or an infected mosquito that was
trapped in a plane. With this information, we would be able to control the transmission
of the communicable disease. We also want to know the linkage of the virus causing the
new epidemic. With the linkage information, we can derive effective treatments and design
effective vaccines for the virus. To derive a hypothesis of the linkage, we need to build a
phylogenetic tree for the virus.

In our project, we study three bio-sequence datasets and build phylogenetic trees for each
of them. The sets of data that we study are albumin gene sequences for assorted animals,
mitochondrial genomic sequence for assorted animals, and genomic sequences for assorted
viruses.

Albumin, a small protein produced by liver, it is the most abundant protein in blood
stream. It is the servant in our blood: its presence controls the osmotic pressure of blood
vessels; it transports non-water soluble particles and removes dangerous free radicals from
blood. Albumin is commonly expressed in animals, including mammals, amphibians and
fish. Albumin has been used as an evolutionary clock since Sarich first proposed albumin
as in 1967 [15, 13]. Human albumin is of particular interest in toxicology for its ability to
bind to various drugs. In our project, we run our implementation against albumin gene
sequences to test if it can produce valid phylogenetic tree to fit our knowledge about the
animal kingdom.

Mitochrondrion is the power house existing in cells of eukaryotes. Its most prominent
roles are to produce energy and to regulate metabolism. Mitochondrial DNA is inherited
as a single unit (haplotype), usually coming from the egg only. In contrast, most other
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nuclear genes are inherited both the sperm and the egg. Uniparental inheritance leads to
little opportunity for genetic recombination between different lineages of mitochondria and
makes mitochondrial DNA a useful source for studying evolutionary history of populations.
Relationship between mitochondrial DNA from different individuals can be expressed as
a pylogenetic tree. Mitochondrial Eve is one of the examples, whose mitochondrial DNA
has been found to the ancestor of all mitochondrial DNA from people all over the world.
The discovery of Mitochondrial Eve supports the hypothesis that all modern human is an
expansion for African population [12]. In our project, we also run our implementation against
mitochondrial DNA to see if it can produce similar result.

A virus is an enemy to our body. In contrast to another enemy, the bacteria, the virus
cannot reproduce itself, but it depends on the host mechanism to do so. In the exercise, we
are looking at a set of viruses that are either known to produce encephalitis like symptoms
or related to the encephalitis virus. The viruses include various coronaviruses, animal-pox
viruses, and dengue viruses together with the virus whose linkage we want to investigate,
the Japanese encephalitis virus.

2.2 Computational Problem

To generate a phylogenetic tree the main computational problems are threefold. First, we
must determine, and compute, a distance metric between every genomic sequence. Second
we must perform hierarchical clustering on the given data sets, utilizing the distance metric
computations. Finally, we must have some manner of visualizing the resulting phylogenetic
tree. Each problem comes with its own set of difficulties that must be overcome, but all
share the problem of computational efficiency. Different distance metrics have different
time complexities, but none have running times faster than linear. Heirarchical clustering
similarly has severl different approaches each with their own time complexity, but again
running times are linear. Visualizing does not have such strict running time requirements,
but rather computational complexity requirements. These requirements stem from the fact
that the main focus of the project is hierarchical clustering and ensuring that aspect is
correct. Thus the complexity and time afforded to working on visualization should be kept
at a bare minimum.

3 Methodology

All the biological sequences data were collected from the National Center for Biotechnology
Information (NBCI), available from www.ncbi.nlm.nih.gov by our course instructor, Ma-
rina Barsky. NCBI is a authentic and credible source of information. Originally a part of
National Library for Medicine, it is US government-funded national resource for molecular
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biology information and an effort of international collaboration. Its genome databases are
organized into six major organism groups: archaea, bacteria, eukaryotae, viruses, viroids,
and plasmids. It provides access to the complete genomes of over 3,200 organisms, and
provides downloads of cDNA sequences in FASTA format [11].

For the distance metric we decided to use the simple Levenshtein distance. This distance
computes the number of insertions, deleteions, or substitutions of single characters between
two different strings, i.e. the edit distance. The algorithm uses the dynamic programming
approach to compute the minimal amount of operations needed. The algorithm first requires
two strings, A and B of length n and m respectively. It operates on two arrays, Prev and
Curr which are of length m. Prev holds the previous row of the dynamic programming
table, while Curr holds the current row. Results are copied from Curr to Prev at the each
pass. Each pass corresponds to finding the shortest distance between A and the current place
in B. In each pass the minimum value of the cost of moving from the left adjacent, upper
adjacent, or upper left adjacent, spot is computed. From the left or upper adjacent spots the
cost of the move is 1 + val where val was the minimum cost to arrive at that spot, and the
1 corresponds to either skipping a character in A or B. From the upper left adjacent spot
the cost of the move is dependent upon whether the characters at the current location in A
and B match, if they do the cost is zero, otherwise it is 1 representing a substitution. The
pseudocode is provided in algorithm 1. The algorithm embraces dynamic programming since
at every point in a pass, computation depends on previous results. The entire edit distance
table is not saved because we have no need for knowing the specific minimal alignments. We
merely need the minimum number of operations. That minimum number will always be in
the last entry Prev once all passes have completed, since at that time every character in A
will have been tested against every character in B.

The running time for computing the Levenshtein distance is order n∗m for strings A and
B. Therefore, to compute a matrix of pairwise distances among z strings, z ∗ z−1

2
instances

of the algorithm must be run . This comes from not needing to run the algorithm for any
entry on the main diagonal, any string is Levenshtein distance 0 from itself, and the matrix
being symmetric. That is the Levenshtein distance between strings A and B is the same as
the Levenshtein distance between strings B and A. Thus only above the main diagonal or
below the main diagonal needs to be run with the algorithm, the other is just a mirror of
those values.

For hierarchical clustering we used the unweighted pair group method with arithmetic
mean (UPGMA) algorithm. This algorithm takes a lower triangular n × n matrix whose
entries are distance measurements between the entity defining the row and the entity defining
the column. These entities are termed clusters, regardless of if they have one element or
many elements (as arises during the algorithm). UPGMA first creates a working copy of
the distance measurements matrix, and leaves the original for reference. Then while there is
still more than one cluster in the working copy, The lowest non-zero entry is located. The
cluster that defines the row and the cluster that defines the column of that entry are grouped
together to form a new cluster. This new cluster is added as a row and a column to the
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Algorithm 1 Levenshtein distance algorithm

Require: String A of length n
Require: String B of length m

for i = 1 to m do
Prev[i]← i

end for
for i = 1 to n do

Curr[0] = i
for j = 1 to m do

if A[i] == B[j] then
Score← 0

else
Score← 1

end if
Curr[j]← min(Curr[j − 1] + 1, P rev[j] + 1, P rev[j − 1] + Score)

end for
Prev ← Curr

end for
return Prev[m]

working distance matrix, while the original row and column are deleted. The entries in the
new row and column are computed as follows. Let the entry to be filled be in location x, y,
then let cluster A be the cluster that defines row x and cluster B be the cluster that defines
column y. Then the value of the entry is

1

|A| ∗ |B|
∗

∑
xεA

∑
yεB

distorig(x, y)

where distorig(x, y) is the value in the original distance measurement matrix at location x, y.
The values of x and y are all of the leaves in cluster A and B. The UPGMA algorithm
also specifies when and how the tree is drawn. The tree is initialized with every cluster in
the distance measurements matrix being a leaf. Then when the lowest entry is selected as
described above, the cluster defining the row and the cluster defining the column are joined
under a new root node. The total length from a leaf in one cluster to a leaf in another
cluster through the new root is the found minimal value. Indicating that the length of each
individual branch is half of the minimal value. These lengths can be seen on our figures in
this report. The pseudocode for UPGMA is presented in algorithm 2. In the pseudocode the
’∗’ operator indicates concatenating two clusters together, while the ’×’ operator indicates
standard multiplication. The running time for this algorithm is order n2, due to the need to
search the entire matrix for the smallest value.

The final computational step that was required was visualization. While the pseudocode
for UPGMA does include steps on how to create the tree visualization, we decided to remove
that complexity from our UPGMA implementation and instead do a post processing step
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Algorithm 2 UPGMA algorithm

Require: lower triangular n× n matrix, A, of pairwise Levenshtein distances
cpy ← A
for all c in cpy do

create node in tree of cluster c
end for
while |cpy| > 1 do

x← lowest value in cpy
c clus← cpy[0][x]
r clus← cpy[x][0]
create new cluster (c clus ∗ r clus)
connect c clus and r clus to new node in tree with branch lengths of x

2

delete row containing r clus in cpy
delete column containing c clus in cpy
for all c in cpy do

if c 6= c clus && c 6= r clus then
cpy[(c clus ∗ r clus)][c]← 1

|c clus∗r clus|×|c| ×
∑

xεc

∑
yε(c clus∗r clus) A[x][y]

end if
end for

end while

on our output for the visualization. We settled upon having our visualization lie in the Dot
language (http://www.graphviz.org/doc/info/lang.html) which is part of the graphviz
project. We decided upon this because of it’s simple specification. All that needs to know
are the nodes and the edges between them and any attributes that maybe associated with
them, such as color, labels, etc. Once that is specified then it can be compiled and the
output is visual representation of the graph.

The steps that were applied in the post processing to get to the visualization, were to
reconstruct the tree in memory from the UPGMA output, verify tree sanity, and finally
output to Dot format. None of these steps have discrete algorithms associated with them.
Tree sanity refers to every non-leaf node must have an height that is greater than both of it’s
children. The height is defined as the value of the entry that determined that two clusters
should be merged in the UPGMA implementation. This value was recorded and printed as
part of the output from UPGMA implementation along with the clusters. To produce Dot
format output first a depth first traversal is performed on the tree to reach all nodes and
their edges. Then a level order traversal is performed to group all of nodes with the same
logical height together in the visualization. Logical height refers to the standard theoretical
computer science notion of height, the height of a node x is the length of the longest path
in the subtree rooted at x.
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4 Analysis

4.1 Biological Perspective

Our albumin result validates the correctness of our implementation, with one interesting
finding. The interesting finding comes from the evolution phenomenon of orthologs and par-
alogs. Orthologs and paralogs are two kinds of homologs, homogeneous sequences descended
from a common ancestral sequence. Orthologs are genes in different species that evolved from
a common ancestral gene by speciation. Orthologs do not necessary have same functions. In
contrast, paralogs are genes within a single species related by duplication within a genome
[4]. As seen in fig. 1, cow, mice and frog results form clusters of their own. The cows are
more closely related to another mammal, mice. From the common ancestor albumin gene, it
has speciated into the common ancestor for the frog and salmon and the common ancestor
for the cow and the mouse.
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Figure 1: Albumin Phologenetic Tree
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Figure 2: Orthologs and Paralogs of Albumin Results

The observation of human albumin genes appears at very far left and very far right of the
whole tree and the left of the left subtree can be explained by paralogy. Paralogy describes
homologous genes within a single species that diverged by gene duplication. As shown by a
simplified diagram of fig. 2, at least two gene duplication events took place in the evolution
history of human albumin gene: one in the common ancestor of human, boar, frog, salmon,
mouse, cow and wolf, another one in the common ancestor of human, frog, salmon, mouse,
cow and wolf. In addition, gene duplication event took place in the common ancestor of
frog and salmon as well. Indeed, studies on albumin phylogeny and mitochondrial DNA
phylogeny on African clawed frogs (Xenopus) has shown the complete genome duplications
took place at least six times. African clawed frogs, Xenopus laevis, was known to have double
chromosome number and genome size of its congener Xenopus (formerly Silurana) tropicalis
[8, 2, 5].

Our mitochondrial result further validate the correctness of our implementation. Our re-
sult is consistent with the hypothesis of Mitochondrial Eve. As seen in fig. 3, all the human
results are clustered together, with the African halogroups closer to each other and the Ne-
olithic Greece halogroup (6800 to 3200 BC) branching off. The overall tree is also consistent
our current understanding of evolution: from the common ancestor, it has speciated into
the ancestor for fish and the ancestor for mammals. As seen in the fig. 3, mammals such
as mice, hippopotamus, giraffe, camel and blackbuck are clustered on the left hand side, the
fish such as puffer fish, pollock, haddock and cod are clustered on the right hand side.
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Figure 3: Mitochondria Phologenetic Tree
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With the validation tests with the mitochondrial genome set and albumin gene set, we
have confidence that our pylogenetic tree for virus is correct. Figure 4 shows three major
clusters, the cluster of animal pox, the cluster of human-host coronavirus, and the cluster of
dengue virus, cow-host coronavirus and Japanese encephalitis virus. From the large distance
(≈24000 basepairs) between first speciation point to animal pox and first speciation point to
dengue virus and coronavirus, we can conclude that animal pox, which is spread by rodents,
is very distant to coronavirus, dengue virus and Japanese Encephalitis. And coronavirus,
dengue virus and Japanese Encephalitis are much closer to each other than to animal pox.
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Figure 4: Virus Phologenetic Tree
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Within the subtree for animal pox, we can derive the order of appearance are that of bird-
host (Canarypox, Fowlpox), camel-host (Camelpox CMS, M-96), monkey-host (Monkeypox
Congo 2003, Liberia 1970, COP-58, Sierra Leone) , and lastly insect-host (AmEPV, MsEPV).
Presumed West African Monkeypox COP-58 is of the closest linkage with the Monkeypox
Sierra Leone in 1970-80s and next closest to Monkeypos Liberia 1970. Monkeypox Congo
2003 is of another linkage.

The right subtree consists of coronavirus, dengue virus and Japanese Encephalitis, we
can derive that the coronaviruses evolved first from their common ancestor, then Japanese
Encephalitis and finally dengue viruses. Under the subtree for the dengue viruses, we can
see the three serotypes are clustered separately: the left cluster is Dengue type 1 (DENV1
2007 Vietam, DENV1 2006 Vietam, DENV1 1997 Brail), the middle one is Dengue type 3
(DENV3 2008 Vietam, DENV3 2007 Vietam, DENV3 1998 Indonesia) and the right one is
Dengue type 2 (DENV2 Vietam, DENV2 2002 Nicargua, DENV2 2002 Taiwan).

The result of coronavirus is a little more difficult to interpret. There are huge genetic
differences within the species of coronavirus. As seen in fig. 4, coronavirus forms two
major clusters, one appears on the right and another on the left of dengue virus. Our first
impression is that there is gene duplication event taken place in coronavirus or its ancestor.
However, when we slip the subtree of animal-host coronavirus and dengue virus horizontally,
this observation disappears. Under close examination, we found that bovine coronavirus
appears in both left and right coronavirus trees. Bovine coronavirus is the first outgroup
in both trees as well. Therefore in both left linkage which is predominant by human-host
coronavirus and the right linkage which is predominant by animal-host, bovine coronavirus
is the common ancestor. Bovine CoV Quebec is more closely related to human coronavirus
but Bovine CoV KCD1 is more closely related to the animal-host coronavirus.

Within the left subtree that is pre-dominant with human coronavirus, Bovine CoV Que-
bec is of closest distance to CoV OC43 1967. Then Human CoV HKU1 is next closest to
it. Bat-host SARS CoV 2004, which causes the SARS pandemic, is a early branch-off to
this group, which is classified as group 2 coronavirus in the literature [7]. Within the right
subtree that is pre-dominantly animal-host coronavirus, Canine CoV CB/05 and Canine
CoV INSAVC-1 are closely related each other, and so are bat-host CoV 2006 Shandong and
Bovine CoV KCD1. CoV 2006 Guangxi, which host is Asian leopard cat, also falls within
this linkage, which is classified as group 1 coronavirus in the literature [7].

The virus under investigation, Japanese encephalitis virus, is sandwiched between the
dengue virus and the animal-host coronavirus. The absolute distance suggests that Japanese
Encephalitis virus is more closely related to dengue virus than to the coronavirus. The
phylogenetic tree structure suggests that coronavirus is its ancestor. In other words, Japanese
Encephalitis is a early branch off of dengue virus.

14



4.2 Computational Perspective

Each of the three computational challenges were successfully met and over come. Though
each did have their own share of difficulties and from them lessons to learn. Finally all of
them do have some implications to other computational problems and domains.

For Levenshtein distance the single most crucial part of the entire algorithm, in relation
to the running time, is in copying Curr to Prev. Our initial implementation did this by
naively copying each element from Curr to Prev. This increases the running time by a power
of two, since m elements must be copied n times. For a large number of (short) sequences,
or for a small number of long sequences, this extra running time becomes significant. Since
some Mitochondrian sequences were over 200, 000 characters in length generating the distance
measurement matrix was taking multiple days. Once we realized that this was the bottleneck
we were ale to overcome it by low level memory management provided by our implementation
language. The language provided direct copying of arbitrary amounts of memory. Since
arrays are stored as contiguous blocks of memory it allowed us to transfer the entire array in
one operation. This reduces the additional complexity to a constant order, greatly increasing
the throughput of the implementation. But this was not enough to get the implementation to
run in a reasonable amount of time. It was still taking around a day to compute the matrix
fro all pairs. To overcome this we increased the compiler optimization. While this does
allow for the possibility of incorrect results to crop up due to over aggressive optimization,
we extensively tested correct operation of our algorithm and trust in the developers of gcc.
After this we were able to gather the distance matrix against all pairs in about 10 hours.
This ended up being the bottleneck over the entire project, more time was spent in this
phase than all the others combined.

For UPGMA, we feared that the insertion of a new row and the deletion of a row and
column in the working matrix would be our greatest problem. But in reality it did not end up
being the one that gave us the most grief. Due to the language of our implementation having
heavy support for arrays (boht single and multi-dimensional), these operations were trivial.
What did cause us the most grief was the type weakness of the language. Our working
matrix ended up being strings instead of numbers, so when we applied numerical operations
to them, they would not return the correct result. But in the applying of these operations,
no warning or error or any other sort of notification alerted us as to a possible problem. The
language would continue to execute and implicitly convert the operation such that it would
work on with the operands. Only after significant amounts of debugging were we able to
identify and remedy this problem. Once fixed our implementation worked flawlessly.

For visualization the most challenging part was the actual output into Dot format. The
reconstruction of the clustering tree in memory was straight forward due to it being a com-
plete binary tree. Likewise the sanity checking was easily performed recursively on the binary
tree. The output is where things became complicated. When compiling a Dot file the com-
piler doesn’t produce output that has distinct levels from the leaves to the root. Rather it
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sequentially reads from the file and creates a new level in the tree for every new node that
it encounters. This was a problem due to our generating the Dot file by performing a depth
first traversal of the tree. Thus in a diagram that should have all leaves along the bottom and
the root at the top, the actual display was an extremely tall tree that had as many levels
as there were leaves. In order to correct this we had to perform a second traversal, that
proceeded through the tree in level order, such that we could output what nodes should be
on the same level as one another. The combination of these things allowed us to output the
complete phylogenetic trees that are seen in this report. The primary benefit, which turned
into a limitation, of using the Dot format is that we were able to just compile it and get an
appropriate visualization. We have very little control over how the edges are drawn or the
placement of the nodes, both are under the control of the compiler. This as can be seen from
the figures in the report, where most of the edges have distinct curves to them. This makes
the trees have an appearance of being balanced but in fact this is not the case. Looking at
the lengths of the edges it quickly becomes clear parts of the tree are far from proportional.
This does have a strong implication in the interpretation of the UPGMA results, it means
that the initial distance measurement matrices were not ultrametric. The ultrametric prop-
erty states that for any three entries in the distance measurement matrix, Mij,Mik, Mjk,
two are the same value and the third is of equal or lesser value. If this property is satisfied
then it means that the evolutionary rate for every organism in the matrix is the same and
from every root both branches will have the same length. Thus with our phylogenetic trees
indicating that that our distance matrices do not have the ultrametric property, then we can
conclude that organisms we are investigating have different rates of evolution.

The overall implications that we can draw from our implementations is that even though
the algorithms run with acceptable complexities, on large inputs they are still quite slow.
Often this aspect is missed in other projects because the input sizes are kept appropriately
small such that naive implementations can still run fast. In our project there was little room
for missteps since any additional complexity would have great impact on the project as a
whole.

5 Further Applications

Similar applications have been used in real-life for investigating and monitoring the West Nile
virus epidemic, 2003 severe acute respirator syndrome (SARS) pandemic in Asia, influenza
epidemic in China and other epidemics. Epidemiology of the West Nile virus has been closely
monitored in Europe. In Spain, researchers have performed characterization two isolates
obtained from two golden eagles. Their complete genome sequence comparisons revealed
high identity between these isolates and close relationship with other Western Mediterranean
WNV strains isolated since 1996. Phylogenetic analysis within this group indicated that two
distinct phylogenetic groups have emerged from earlier strains [14].
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Virological surveillance in southern China was taken as an aftermath after the 2003 SARS.
A group of Hong Kong researchers have performed phylogenetic analyses on this virological
surveillance data. They have discovered that surveillance novel SARS coronaviruses detected
from wild Asian leopard cats and Chinese ferret badgers fell into an outgroup phylogenetic
relationship with respect to other coronaviruses and had low amino acid similarity to all
known coronavirus groups. The result indicates that the novel SARS virus diverged early
in the evolutionary history of coronaviruses and suggests a previous undiscovered evolution
pathway [3].

A group of researchers in China have employed similar approach to understand an in-
fluenza virus circulated from 2001 to 2006 in Chinas Liaoning local area. They has ex-
tracted, transcribed and sequenced the viral RNA. Then the researcher draws the phyloge-
netic trees according to deduced amino acid sequences of influenza virus H3N2 from 2000
to 2006 in the NCBI database. The phylogenetic tree shows Liaoning H3N2 2006 strains
and Zhejiang 2005 strains are similar to WHO Northern hemisphere winter 2006-2007 Vac-
cine A/Wisconsin/67/2005 (H3N2)-like virus and grouped together to form an independent
cluster [16].

Hierarchical clustering has also been used in other areas of computer science. One specific
application is for document comparison and version control. When there is a large repository
of documents and many users can access and modify those documents, it becomes crucial
to understand how the have arrived in their current state. In this way accountability and
security of the document can be ensured. In principle to find the ”evolution” of a document
the same process that we went through would be applied to it. Instead of DNA sequences
from multiple species, it would be multiple revisions of the document. Then clustering and
visualization would be performed.

The theoretical work on clustering has not finished yet either. The major realm where
this work is being done is in the context of data streaming. Data streaming is where there
is a large amount of data flowing though a given point. That point has limited memory and
time to investigate the data. Furthermore it only gets to see each piece of data exactly once.
Further at the point statistical information about the data is to be gathered. Such statistical
information can include the types of data that have gone through the point. To accomplish
this variants of the methodology presented in this report are used and are being currently
developed.

6 Conclusions

In conclusion, we have overcome challenges and successfully solved our three-stage computa-
tional challenges for building phylogenetic trees for three given sets of biological sequences.
For the whole project, we have implemented 100 lines of codes for Edit distance (C++),
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300 lines of codes for UPGMA(Python), 200 lines of codes for visualization (C++) and 100
lines of codes for supporting problem (C++). We have countered problems in each of the
stages: Timely computing for constructing distance matrix, hidden data typing errors until
run time in updating distance matrix for UPGMA, and resulting phylogeny being visualized
as a long tree with leaves at every level because of default depth-first traversal. The first
problem, efficiency problems for distance matrix construction, was solved by low memory
management and compiler optimization. With much debugging, we discovered the cause of
the second problem and were able to solve it. We solved the third problem by forcing a
second level-order traversal of the phylogenetic tree.

In total, we have run our implementation against three datasets, albumin gene sequences
for assorted animals, mitochondrial genomic sequences for assorted animals and genomic
sequences for animal pox, coronavirus, Japanese Encephalitis virus and dengue virus. The
running time for each of data set is acceptable. We used the first two sets, albumin and mito-
chondrion, as the validation sets for our implementation. Both albumin and mitochondrion
are referred to as evolutionary clocks. We are confident that our implementation is correct
because the results for both sets are consistent with the current knowledge of evolution.
In addition, from the pylogenetic tree based on albumin, we also observe gene duplication
events taken place in African clawed frog and its ancestors; these events have been studied
by numerous researchers. Finally, the run against our test set, viruses, has shown three
distinct clusters, with the cluster of animal pox very distant from the cluster of human-host
coronavirus and from the cluster of dengue virus. We interpret that coronavirus, dengue
virus and Japanese Encephalitis are much closer to each other than to animal pox.

Though our implementation was successful on the data sets we were provided with we
feel that there is still further work to be done. First and foremost would be to streamline
the process of going from data set to phylogeny tree. We currently have to go through
19 steps, with a significant amount of manual intervention needed. While these steps were
manageable for the small number of data sets that we worked with, it does not scale well.
By reducing the number of steps, or at least automating the transition between steps, the
process would become more ”fire-and-forget” which would allow us focus on other important
tasks. the other major part of future work would be to run our implementation on larger
amounts of data. The data sets were quite sparse, only 15 to 30 sequences in each set, thus
our conclusions are quite general. By running on more sequences in a set we would have
a much clearer picture of the what happened during evolution and would thus be able to
draw much more in depth conclusions. By running on other sets entirely we would be able
to both simply draw more conclusions and to better correlate the results with one another.
As it stands our data sets are very disjoint from one another, both in biologic function and
the genetic hosts.

We feel that the project has been a worthwhile exercise, since it has had strong com-
ponents both in biology and in computer science. Even though there were many points of
confusion during the project about expectations and applicability of provided data sets, we
believe that we adequately resolved these issues and are able to present our results with con-
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fidence. We further feel different backgrounds, one was strong in biology and the other strong
in computer science, has been beneficial rather than a hindrance. By having backgrounds
in the two fields we were able to translate the biological problem to a computer science
problem, determine an implementation of the problem, then interpret the results back into
a biological context. We believe that this process of taking problems and converting them
to different domains and then being able to reconvert back crucial to both computer science
and biology as well as other fields. The main difficulty comes in how effectively communicate
the problems between domains such that domain experts are able to understand the problem
and solve them. This course has provided us with some insight into numerous problems in
both biology and computer science that can be effectively solved using knowledge from one
another. We hope to be able to keep this in mind as we proceed forward with our careers so
that future difficult problems can also be solved.
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7 Appendices

Table 1: Figure 1 Label to Sequence Information

Labels Name used in report Common name Identifier
A0 human human gb:AF542069.1
A1 human human gb:M12523.1
A2 cow European taurine cattle gb:AF542068.1
A3 cow European taurine cattle emb:Y17769.1
A4 cow European taurine cattle emb:X58989.1
A5 frog* African clawed frog* ref:NM 001004887.1
A6 frog African clawed frog gb:M21442.1
A7 frog African clawed frog gb:M18350.1
A8 frog African clawed frog ref:NM 001087775.1
A9 boar wild boar gb:AY663543.1
A10 human human gb:M12523.1
A11 salmon Atlantic salmon ref:NM 001123692.1
A12 wolf gray wolf dbj:AB090854.1
A13 mouse house mouse emb:AJ457860.1
A14 mouse house mouse emb:AJ011413.1
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Table 2: Figure 3 Label to Sequence Information

Labels Name used in report Common name Identifier
A0 human haplogroup H2a1 E.

Arfrica
human haplogroup H2a1 E.
Africa

gb:FJ800808.1

A1 human haplogroup H3c sub
Sarharan Africa

human haplogroup H3c sub
Sarharan Africa

gb:FJ794693.1

A2 human haplogroup H1c1 W.
& C. sub-Saharan Africa

human haplogroup H1c1 W.
& C. sub-Saharan Africa

gb:FJ798928.1

A3 human haplogroup H5
Africa

human haplogroup H5
Africa

gb:FJ794473.1

A4 human haplogroup J2b Ne-
olithic Greece

human haplogroup J2b Ne-
olithic Greece

gb:FJ445408.2

A5 Mouse House mouse dbj:AP003428.1
A6 Hippopotamus Hippopotamus dbj:AP003425.1
A7 Giraffe Giraffe dbj:AP003424.1
A8 Bactrian Camel Bactrian Camel dbj:AP003423.1
A9 Blackbuck Blackbuck dbj—AP003422.1
A10 Fugu Puffer fish Fugu Puffer fish dbj:AP009536.1
A11 Oblong blow fish Oblong blow fish dbj:AP009535.1
A12 Eyespot Puffer Eyespot Puffer dbj:AP009534.1
A13 Norwegian pollock Norwegian pollock emb:AM489719.1
A14 Norwegian pollock Norwegian pollock emb:AM489718.1
A15 Haddock Haddock emb:AM489717.1
A16 Atlantic cod Atlantic cod emb:AM489716.1
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Table 3: Figure 4 Label to Sequence Information

Labels Name used in report Common host(s) Transmission vector Geographic Location Identifier
A0 Canarypox bird insect Canarypox virus

ATCC VR-111
A1 Fowlpox poultry Fowlpox virus HP1-

438 Munich
A2 Camelpox CMS camel rodent gb:AY009089
A3 Camelpox M-96 camel rodent gb:NC 003391
A4 MPV COP-58 monkey rodent W Africa gb:AY753185
A5 MPV Congo 2003 human rodent Congo gb:DQ011154
A6 MPV Liberia 1970 human rodent Liberia gb:DQ011156
A7 MPV Sierra Leone monkey rodent Sierra Leone gb:AY741551
A8 AmEPV insect gb:NC 002520
A9 MsEPV grasshopper, locust gb:NC 001993
A10 CoV 2006 Guangxi Asian leopard cat Guangxi, China gb:EF584908
A11 SARS CoV 2004 Bat China gb:DQ648856
A12 Canine CoV CB/05 Dog gb:DQ112226
A13 CoV 2006 Shandong Bat Shandong, China gb:EF434381
A14 Canine CoV INSAVC-1 Dog gb:D13096
A15 Bovine CoV Quebec Cattle Quebec gb:AF220295
A16 Bovine CoV KCD1 Cattle South Korea gb:DQ389632
A17 Human CoV HKU1 N24 human Hong Kong gb:DQ415901
A18 Human CoV OC43 1967 human gb:AY585228
A19 Human CoV OC43 1967 human gb:AY585228
A20 Japanese encephalitis human mosquito gb:AY849939
A21 DENV1 1523/2007 Vietnam human mosquito Vietnam: South gb:EU677151
A22 DENV1 1997 Brail human mosquito Brazil gb:AF311957
A23 DENV2 2002 Nicargua human mosquito Nicaragua: Managua gb:EU482634
A24 DENV2 2002 Taiwan human mosquito Taiwan gb:DQ645547
A25 DENV2 Vietnam human mosquito Vietnam: South gb:FM210210

Continued on Next Page. . .
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Table 3 – Continued

Labels Name used in report Common host(s) Transmission vector Geographic Location Identifier
A26 DENV3 1998 Indonesia human mosquito Indonesia: Sumatra gb:AB189128
A27 DENV3 2008 Vietnam human mosquito Vietnam: South gb:FJ461334
A28 DENV3 2007 Vietnam human mosquito Vietnam: South gb:FJ562097
A29 DENV1 2006 Vietnam human mosquito Vietnam: south gb:EU482817
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