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SUMMARY

The construction of suffix trees in secondary storage was considered impractical due to
its excessive I/O cost. Algorithms developed in the last decade show that a suffix tree
can efficiently be built in secondary storage for inputs which fit the main memory. In this
paper, we analyze the details of algorithmic approaches to the external memory suffix
tree construction and compare the performance and scalability of existing state-of-the-
art software based on these algorithms.
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1. Introduction

Suffix trees [27] are digital trees which index all the distinct non-empty substrings of a given
set of strings. An early, implicit form of suffix trees can be found in Morrison’s [28] Patricia
tree†. But it was Weiner [42] who initially proposed to use a suffix tree as an explicit index.

Once the suffix tree for a set of strings is built, we can solve multiple combinatorial problems
on strings in optimal time, that is in time linear in the length of the input. Finding common
patterns, each pattern being a substring of every string in the input set, is one example of
such a problem [17]. Counting the total number of different substrings with the same linear
time complexity is another example [35]. Suffix trees can be used to find all the locations of a
pattern in a set of strings, to compute matching statistics, to locate all repetitive substrings,
or to extract palindromes [17].
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Such marvelous facilities do not come without a price: the suffix tree occupies at least 10
times more space than the input it is built upon. For example, when we build the suffix tree
for an input of size 1GB, we will require at least 10GB of space. As of February 2008, the total
size of the publicly available GenBank sequence databases has reached 85Gbp, and the size
of data in the Whole Genome Shotgun (WGS) sequencing project stands at about 109Gbp
[43]. Notably, the size of GenBank is doubling approximately every 18 months [5]. If we aim
to build the suffix tree for the entire database of publicly available sequenced DNA, the space
required for such a tree (not less than 850 GB) is too big for the main memory of the modern
computer. To construct such a tree, we can use larger and cheaper disk space instead‡.

In order to use this larger disk space we need to design an external memory (EM) algorithm
for the construction of the suffix tree. EM algorithms differ from the algorithms for main
memory. The access to data on a disk is 105-106 times slower than the access to data in
main memory [41]. In order to compensate for these speed differences in the design of EM
algorithms, the external memory computational model, or disk access model (DAM), was
proposed [40]. DAM represents the computer memory in form of two layers with different
access characteristics: the fast main memory of a limited size M , and a slow and arbitrarily
large secondary storage memory (disk). In addition, for disks, it takes about as long to fetch
a consecutive block of data as it does to fetch a single byte. That is why in the DAM
computational model the asymptotic performance is evaluated as the total number of block
transfers between a disk and main memory.

Although the DAM computational model is a workable approximation, it does not always
accurately predict the performance of EM algorithms. This is because it does not take into
account the following important disk access property. The cost of a random disk access is the
sum of seek time, rotational delay and transfer time. The first two dominate this cost in the
average case, and as such, are the bottleneck of a random disk access. However, if the disk head
is positioned exactly over the piece of data we want, then there is no seek time and rotational
delay component, but only transfer time. Hence if we access data sequentially in disk, then
we only pay seek time and rotational delay for locating the first block of the data, but not for
the subsequent blocks. The difference in cost between sequential and random access becomes
even more prominent if we also consider read-ahead-buffering optimizations which are common
in current disks and operating systems [9]. Thus, the number of random disk accesses is an
important measure to predict the efficiency of EM algorithms.

Before describing the strategies of EM algorithms for the suffix tree construction, let us take
a closer look at the suffix tree data structure and its computer representation.

1.1. The suffix tree data structure

First, we equip ourselves with some useful definitions.

‡Note that we focus in our discussion on the traditional rotating disks. We believe that research on the use of
SSD disks, which have a different access behavior, is certainly a promising future direction, but to the best of
our knowledge, SSDs have not yet been explored as a memory extension for the suffix tree construction.
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We consider a string X = x0x1 . . . xN−1 to be a sequence of N symbols over an alphabet
Σ. We attach to the end of X one more symbol, $, which is unique and not in Σ (a so-called
sentinel).

By Si = X [i, N ] we denote a suffix of X beginning at position i, 0 ≤ i ≤ N . Thus S0 = X
and SN = $. Note that we can uniquely identify each suffix by its starting position.

Prefix Pi is a substring [0, i] of X . The longest common prefix LCPij of two suffixes Si and
Sj is a substring X [i, i+k] such that X [i, i+k] = X [j, j+k], and X [i, i+k+1] �= X [j, j+k+1].
For example, if X = ababc, then LCP0,2 = ab, and |LCP0,2| = 2.

If we sort all the suffixes of string X in lexicographical order and record this order into an
array SA of integers, then we obtain the suffix array of X . SA holds all integers i in the range
[0, N ], where i represents Si. In more practical terms, the array SA is an array of positions
sorted according to the lexicographic order of the suffixes. Note that the suffixes themselves
are not stored in this array but are rather represented by their start positions. For example,
for X = ababc$ SA = [5, 0, 2, 1, 3, 4]. The suffix array can be augmented with the information
about the longest common prefixes for each pair of suffixes represented as consecutive numbers
in SA.

A trie is a type of digital search tree [24]. In a trie, each edge represents a character from
the alphabet Σ. The maximum number of children for each trie node is |Σ|, and sibling edges
must represent distinct symbols. A suffix trie is a trie for all the suffixes of X . As an example,
the suffix trie for X = ababc is shown in Figure 1 [Left]. Beginning at the root node, each of
the suffixes of X can be found in the trie: starting with ababc, babc, abc, bc and finishing with
a c. Because of this organization, the occurrence of any query substring of X can be found by
starting at the root and following matches down the trie edges until the query is exhausted. In
the worst case, the total number of nodes in the trie is quadratic in N . This situation arises,
for example, if all the paths in the trie are disjoint, as for the input string abcde.

The number of edges in the suffix trie can be reduced by collapsing paths containing unary
nodes into a single edge. This process yields the structure called suffix tree. Figure 1 [Right]
shows what the suffix trie for X looks like when converted to a suffix tree. The tree still has the
same general shape, just far fewer nodes. The leaves are labeled with the start position in X
of corresponding suffixes, and each suffix can be found in the tree by concatenating substrings
associated with edge labels. In practice, these substrings are not stored explicitly, but they
are represented as an ordered pair of integers indexing its start and end position in X . The
total number of nodes in the suffix tree is constrained due to two facts: (1) there are exactly
N leaves and (2) the degree of any external node is at least 2. There are therefore at most
N − 1 internal nodes in the tree. Hence, the maximum number of nodes (and edges) is linear
in N . The tree’s total space is linear in N in the case that each edge label can be stored in
a constant space. Fortunately, this is the case for an implicit representation of substrings by
their positions.

More formally, a suffix tree is a digital tree of symbols for the suffixes of X , where edges are
labeled with the start and end positions in X of the substrings they represent. Note also that
each internal node in the suffix tree represents an end of the longest common prefix for some
pair of suffixes.
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Figure 1. [Left] The suffix trie for X = ababc. Since c occurs only at the end of X, it can serve
as a unique sentinel symbol. Note that each suffix of X can be found in the trie by concatenating
character labels on the path from the root to the corresponding leaf node. [Right] The suffix tree for
X = ababc. For clarity, the explicit edge labels are shown, which are represented as ordered pairs of
positions in the actual suffix tree. Each suffix Si can be found by concatenating substrings of X on

the path from the root to the leaf node Li.
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Figure 2. An array representation of the suffix tree for X = ababc. Each node contains an array of 4
child pointers. Note that not all the cells of this array are in use. The sequences in the nodes are the

labels of the incoming edges. They are shown for clarity only and are not stored explicitly.

1.2. Suffix tree storage optimizations

We discuss next the problem of suffix tree representation in memory in order to estimate the
disk space requirements for the suffix tree.

It is common to represent the node of a suffix tree together with the information about an
incoming edge label. Each node, therefore, contains two integers representing the start and
end positions of the corresponding substring of X . In fact, it is enough to store only the start
position of this substring as the length of it can be deduced from the start position of the child
node or is simply N if current node is a leaf. In a straightforward implementation, each node
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Figure 3. [A]. Left-child right-sibling representation of the suffix tree for X = ababc. Each
node contains 1 pointer to its first child and 1 pointer to the next sibling. [B]. Giegerich et al.’s
representation of the suffix tree, where all siblings are represented as consecutive elements in the array
of nodes. The special symbol � indicates the bit representing the last sibling. Each node contains only

a pointer to the first child and the start position of the incoming edge-label.

has pointers to all its child nodes. These child pointers can be represented as an array, as a
linked list or as a hash table [17].

If the size of Σ is small, the child node pointers can be represented in form of an array of
size |Σ|. Each ith entry in this array represents the child node whose incoming label starts
with the ith character in a ranked alphabet. This is very useful for tree traversals, since the
corresponding child can be located in constant time. Let us first consider the tree space for
the inputs where N is less than the largest 4 byte integer, i.e. log N < 32. In this case, each
node structure consists of |Σ| integers for child node pointers plus one integer to represent the
start position of the edge-label substring. Since there are at most 2N nodes in the tree, the
total space required is 2N(|Σ| + 1) integers, which, for example, for |Σ| = 4 (DNA alphabet)
yields 40N bytes of storage per N bytes of input. Such representation is depicted in Figure 2.

For larger alphabets, an array representation of children is impractical and can be replaced
by a linked list representation [17]. However, this requires an additional log|Σ| search time
spent at each internal node during the tree traversal, in order to locate a corresponding child.
In addition, since the position of a child in a list does not reflect the first symbol of its incoming
edge label, we may need to store an additional byte representing this first character.

Another possibility is to represent child pointers as a hash table [17]. This preserves
a constant-time access to each child node and is more space-efficient than the array
representation.

The linked-list based representation known as a “left-child right-sibling” was proposed by
McCreight in [27]. In this implementation, the suffix tree is represented as a set of node
structures, each consisting of the start position of the substring labeling the incoming edge,
together with two pointers – one pointing to the node’s first child and the other one to its next
sibling. Recall that the end position of the edge-label substring is not stored explicitly, since for
an internal node it can be deduced from the start position of its first child, and for a leaf node
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this end position is simply N . This representation of the node’s children is of type linked list,
with all its space advantages and search drawbacks. The McCreight suffix tree representation
is illustrated in Figure 3 [A]. Each suffix tree node consists of 3 integers, and since there are
up to 2N nodes in the tree, the size of such a tree is at most 24N . Again, for better traversal
efficiency, we may store the first symbol along each edge label. Then the total size of a suffix
tree will be at most 25N bytes for N bytes of input.

An even more space efficient storage scheme was proposed by Giegerich et al. [16]. In this
optimization, the pointers to sibling nodes are not stored, but the sibling nodes are placed
consecutively in memory. The last sibling is marked by a special bit. Now, each node stores
only the start position of a corresponding edge-label plus the pointer to its leftmost child. As
before, for efficiency of the traversal, each node may store an additional byte representing the
start symbol of its edge label. The size of such a tree node is 9 bytes. For a maximum of 2N
nodes this yields a maximum of 18N bytes of storage. Giegerich et al.’s [16] representation is
depicted in Figure 3 [B].

An additional possibility to optimize the storage of the suffix tree is to consider each suffix
as a sequence of bits. The problem of renaming, which is a generic reduction from strings
over an unbounded alphabet to binary strings, was studied in [11]. It was shown that such a
reduction can be done in linear time. Note that a string over any alphabet Σ can always be
reduced to the binary alphabet by representing each character as a sequence of b = log|Σ| bits
and then concatenating these binary sequences.

For a binary alphabet, any internal node in the suffix tree has exactly two children. This is
because such a node cannot have more than two children, but also cannot have less than two
for it to be a suffix tree internal node. This allows using two child pointers only (per node) and
representing the entire suffix tree as an array of the constant-sized nodes. If the entire input
string is considered as a sequence of bits, only the valid suffixes are added to the tree. These are
the suffixes starting at positions i such that i mod b = 0, where b is the number of bits used to
represent each character of Σ. As such, we have the same number of tree nodes as before: the
tree has one leaf node and one internal node per inserted suffix. Figure 4 shows the equivalent
suffix trees over the original and the binary alphabets for input string X = ababc. Each node
has exactly two child pointers plus one integer representing start position of incoming edge-
label. Since there are exactly 2N nodes in such a tree, the total size is 24N bytes. Note that
this is independent of the size of the alphabet.

This binary representation of the suffix tree supports many common string queries. For
example, in order to find occurrences of a pattern in string X we can treat the pattern as
a sequence of bits, and match these bits along the path starting at the root. Also, if we are
looking for the longest repeating substring (LRS) of X , and the alphabet contains characters
represented by b bits each, we find the internal node of the greatest depth, say d, from the
root. Then we calculate the LRS (with respect to the original alphabet) as LRS = �d/b�.

Note that in all representations the leaf nodes do not contain child pointers, thus at the end
of the construction we can output the leaf nodes in a separate array. Each element in the array
of leaf nodes stores only the start position of the corresponding substring since the end position
is implied to be N . In this case, the array representation occupies 24N bytes (for Σ = 4), the
McCreight suffix tree occupies 20N bytes, Giegerich et al.’s representation occupies 12N bytes
and the suffix tree for the binary alphabet occupies 16N bytes. These representations are in
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Figure 4. [Left] Suffix tree for X = ababc given for comparison. [Right] Suffix tree for the same
input string where each suffix is converted to a sequence of bits. Each character is encoded using 2

bits.

general§ not well suited for the use during the process of tree construction when we update
the tree nodes, but they can be used when outputting the complete tree to disk.

This short survey of storage requirements clearly demonstrates the fact that the suffix tree
is very space-demanding, even if we are using an “unlimited” space of disks. For example, for
an input of 2GB, the tree occupies at least 24GB of disk space. Further, for inputs exceeding
in size the largest 4-byte integer, the start positions and the child pointers need more than 4
bytes for their representation, namely log N bits for each number. In practice, for the inputs
of a size in the tens of gigabytes the tree can easily reach 50N bytes. This is important to
remember while designing algorithms for efficient traversals of such large trees (see section
2.6).

Until 2007, the data structure by Giegerich et al. [16] was known as the most space efficient
representation. Then Sadakane [34] fully developed the compressed suffix tree and its balanced
parenthesis representation. More about compressed suffix trees can be found in recent papers
[13, 33]. The compressed representation allows to store the entire suffix tree in only 5N bits.
An example of the parenthesis representation of the suffix tree nodes for string X = ababc is
shown in Figure 5. The parentheses describe the tree topology. In order to store the information
about the start position and the depth of each tree node, a special array and its unary encoding
are used to bring the total memory requirements for the tree to 5N bits [34]. The compressed
suffix tree supports all regular suffix tree queries with a poly-log slowdown [34]. The algorithm
for the compressed suffix tree construction was implemented (see [38]) and is available for
indexing genomic sequences [39]. The research on compressed suffix trees aims to compress the
input string and the output tree into a smaller self-indexing structure which can fit into main

§The exception is the Top Down Disk Based suffix tree construction (TDD) [36], where the nodes are created
from the top and at each step it is known how many children each node contains at the end of the computation.
Thus, leaf nodes occupy only four bytes during the construction itself.
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Figure 5. The parenthesis tree representation is a main high-level idea for the suffix tree compression
[34].

memory. Hence, we do not consider the construction of compressed suffix trees as a part of this
survey. This brief outline of the compressed suffix tree representation is given here only to show
that the entire fully-functional suffix tree can be stored using much less space than previously
believed. We underline that the following discussion is about the classical (non-compressed)
suffix trees which are built using secondary storage.

The remainder of the paper is organized as follow. We introduce in Section 2 recent practical
methods for EM suffix tree construction and evaluate their performance and scalability using
the number of sequential passes over disk data, the number of random disk I/Os and the
in-memory running time. Then, in Section 3 we point out the still unsolved challenges in
construction of suffix trees in secondary storage. Finally, in Section 4 we outline theoretical
results which may serve as a basis of further practical research.

2. Practical methods for the suffix tree construction in external memory

In this section, we present the main ideas which gave birth to the state-of-the-art software for
suffix tree construction in secondary storage. These methods are steps toward a completely
scalable suffix tree construction for inputs of any kind and size. When this problem is solved,
a wide range of queries on massive string data will be possible to execute in optimal time.

The suffix tree for the input string X of length N can be built in time O(N). Linear-
time algorithms were developed in [42, 27, 37]. In [15] it was shown that all three of them
are based on similar algorithmic ideas. It might be tempting to use these asymptotically
optimal algorithms for an external memory implementation. However, looking closely at these
algorithms, we observe that they assume that random access to the input string and to the tree
takes constant time. Unfortunately, in practice, when some of these data structures outgrow
the main memory and are accessed directly on disk, the access time to disk-based arrays varies
significantly depending on the relative location of the data on disk. The total number of random
disk accesses for these linear-time algorithms is, in fact, O(N). This is extremely inefficient
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Figure 6. The three first steps of the Ukkonen algorithm. An arrow indicates the active point at the
end of each iteration. Note that the extension of the edges ending at leaf nodes with the next character

is performed implicitly: the edge length is just extended by 1.

and causes the so-called disk thrashing problem, which let the authors in [29] conclude that
the suffix tree in secondary storage is inviable.

The random access behavior of these algorithms in external memory settings can be
improved, as was shown in [4] for Ukkonen’s algorithm [37]. We describe next the Ukkonen
algorithm and show how it was extended for external memory.

2.1. The Ukkonen algorithm and its on-disk version

For a given string X , Ukkonen’s algorithm starts with the empty tree (that is, a tree consisting
just of a root node) and then progressively builds an intermediate suffix tree STi for each prefix
X [0, i], 0 ≤ i < N . In order to convert a suffix tree STi−1 into STi, each suffix of STi−1 is
extended with the next character xi. We do this by visiting each suffix in order, starting with
the longest suffix and ending with the shortest one (empty string). The suffixes inserted into
STi−1 may end in three types of nodes: leaf nodes, internal nodes or in the middle of an edge
(at a so-called implicit internal node). Note that if a suffix of STi−1 ends in a leaf node, we
do not need to extend it with the next character. Instead, we consider each leaf node as an
open node: at each step of the algorithm every leaf node runs till the end of the current prefix,
meaning the end position on each leaf node will eventually become N . Consider the example in
Figure 6. It shows the three first iterations of the suffix tree construction for X = ababcababd.
In the second iteration, we implicitly extend the a-child of a root node with b, and we add a
new edge for b from the root (extending an empty suffix).

Thus, in each iteration, we need to update only suffixes of STi−1 which end at explicit or
implicit internal nodes of STi−1. We find the end of the longest among such suffixes at the
active point. The active point is the (explicit or implicit) internal node where the previous
iteration ended. If the node at the active point already has a child starting with xi, the active
point advances one position down the corresponding edge. This means that all the suffixes
of STi already exist in STi−1 as the prefixes of some other suffixes. In case that there is no
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outgoing edge starting with the new character, we add a new leaf node as a child of our explicit
or implicit internal node (active point). Here an implicit internal node becomes explicit. In
order to move to the extension of the next suffix, which is shorter by one character, we follow
the chain of suffix links. A suffix link is a directed edge from each internal node of the suffix tree
(source) to some other internal node whose incoming path is one (the first) character shorter
than the incoming path of the source node. The suffix links are added when the sequence of
internal nodes is created during edge splits.

To illustrate, consider the last iteration of the Ukkonen algorithm – extending an
intermediate tree for for X = ababcababd with the last character d. We extend all the suffixes
of ST8 (Figure 7 [A]) with this last character. The active point is originally two characters
below the node labeled by � in Figure 7 [A], and the implicit internal node is indicated by a
black triangle. The active point is converted to an explicit internal node with two children: one
of them is the existing leaf with incoming edge label cababd and the other one is a new leaf for
suffix S5 (Figure 7 [B]). Then, we follow the suffix link from the �-node to the ��-node, and
we add a new leaf by splitting an implicit node two characters below the ��-node. This results
in the tree of Figure 7 [C] with a leaf for suffix S6. Next, the suffix link from the ��-node leads
us to the root node, and two characters along the corresponding edge we find the �-node and
add to it a new edge starting with d and leading to a leaf node for suffix S7 (Figure 7 [D]).
We continue in a similar manner and add the corresponding child starting with d both to the
��-node (Figure 7 [E]) and to the root (Figure 7 [F]). This illustrates how suffix links help to
find all the insertion points for the new leaf nodes. There is a constant number of steps per
leaf creation, therefore the total amortized running time of the Ukkonen algorithm is O(N).

The pseudocode in Figure 8 shows the procedure update for converting STi−1 into STi [30].
Each call of next smaller suffix() finds the next suffix by following a suffix link.

If we look at Figure’s 8 pseudocode from the disk access point of view, we see that locating
the next suffix requires a random tree traversal, one per leaf created. Hence, when the tree
STi−1 is to be stored on disk, a node access requires an entire random disk I/O. This access
time depends on the disk place of the next access point. Moreover, since the edges of the tree
are not labeled with actual characters, it is important that we access randomly the input string
in order to compare the test char with the characters of X encoded as positions in the suffix
tree edges. Unfortunately, this leads to a very impractical performance, since the algorithm
spends all its time moving the disk head from one random disk location to another.

In [4], Bedathur and Haritsa studied the patterns of node accesses during the suffix tree
construction based on Ukkonen’s algorithm. They found that the higher tree nodes are accessed
much more frequently than the deeper ones. This gave rise to the buffer management method
known as TOP-Q. In this on-disk version of Ukkonen’s algorithm, the nodes which are accessed
often, have a priority of staying in the memory buffer, and the other nodes are eventually read
from disk. This significantly improves the hit rate for accessed nodes when compared to rather
straightforward implementations. However, in practical terms, in order to build the suffix tree
for the sequence of the Human chromosome I (approximately 247 MB), the TOP-Q runs for
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Figure 7. The last steps of the Ukkonen algorithm applied to X = ababcababd. In this cascade of leaf
additions the ST8 is updated to ST9. The place for the next insertion is found following the suffix

links (dotted arrows).

96 hours, as was recently evaluated using a modern machine¶[36], and can not be considered
a practical method for indexing large inputs.

Next we describe a brute-force approach for the suffix tree construction, which runs in O(N2)
time in the worst case. Amazingly enough, several fast practical methods for external memory
were developed using this approach, due to the much better locality of tree accesses.

¶We refer to the average machine currently available (Pentium 4 with 2.8 GHz clock speed and 2 GB of main
memory) as the modern machine.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 00:0–0
Prepared using speauth.cls
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Ukkonen’s algorithm
active_point=root
for i from 0 to N

Update ( Prefix [0,i] )

Update (Prefix [0,i] )
curr_suffix_end = active_point
test_char = X [i]
done = false
while not done

if curr_suffix_end is located at explicit node
if the node has no descendant starting with test_char

create new leaf
else

advance active_point down the corresponding edge
done = true

else
if the implicit node's next char is not equal test_char

create explicit node
create new leaf 

else
advance active_point down the corresponding edge
done = true

if curr_suffix_end is located at root node 
active_point=root
done = true

else
curr_suffix_end = next_smaller_suffix()  //follow the suffix link

active_point = curr_suffix_end

Figure 8. Pseudocode of Ukkonen’s algorithm for the suffix-tree construction.

2.2. The brute-force approach and the Hunt algorithm

An intuitive method of constructing the suffix tree ST is the following: for a given string X we
start with a tree consisting of only a root node. We then successively add paths corresponding
to each suffix of X from the longest to the shortest. This results in the algorithm depicted in
Figure 9 [Top].

Here, STi−1 represents the suffix tree after the insertion of all suffixes S0, . . . Si−1. The
Update operation inserts a path corresponding to the next suffix Si yielding STi. In order to
insert suffix Si into the tree we first locate some implicit or explicit node corresponding to
the longest common prefix of Si with some other suffix Sj . To locate this node, we perform
|LCPij | character comparisons. After this, if the path for LCPij ends in an implicit internal
node, it is transformed into an explicit internal node. In any case, we add to this internal node
a new leaf corresponding to suffix Si. Once the end of the LCPij is found, we add a new child
in constant time. Finding the end of LCPij in the tree defines the overall time complexity of
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Brute-force algorithm
for i from 0 to N

Update ( Suffix [i,N] )

Update ( Suffix [i,N] )
find LCP of Suffix [i,N] matching characters from the root
if LCP ends in explicit node

add child leaf labeled by X[i+LCP+1,N]
else

create explicit node at depth LCP from the root
add child leaf labeled by X[i+LCP+1,N]

Hunt et al.’s algorithm
for each prefix PR of length prefix_len

for i from 0 to N
Update ( Suffix [i,N], PR )

write sub-tree for prefix PR to disk

Update ( Suffix [i,N], PR )
if X[i,i+prefix_len] equals PR

find LCP of Suffix [i,N] matching characters from the root of the sub-tree 
if LCP ends in explicit node

add child leaf labeled by X[i+LCP+1,N]
else

create explicit node at depth LCP from the root
add child leaf labeled by X[i+LCP+1,N]

Figure 9. [Bottom]. The pseudocode of Hunt et al.’s algorithm [18] for the suffix-tree construction
based on the brute-force algorithm shown at the [Top].

the algorithm. The end of a LCP can be found in one step in the best case but in N steps
in the worst case for each of N inserted suffixes. This can, in the worst case, lead to O(N2)
total character comparisons. However, Apostolico and Szpankowski have shown in [2] that on
average the brute-force construction requires O(N log N) time. Their analysis was based on the
assumption that the symbols of X are independent and randomly selected from an alphabet
according to a given probability distribution.

Based on this brute-force approach, the first practical external memory suffix tree
construction algorithm was developed in [18]. Hunt et al.’s incremental construction trades
an ideal O(N) performance for locality of access to the tree during its construction. The
output tree is in fact represented as a forest of several suffix trees. The suffixes in each such
tree share a common prefix. Each tree is built independently and requires scanning of the
entire input string for each such prefix. The idea is that the suffixes that have prefix, say,
aa fall into a different subtree than those starting with ab, ac and ad. Hence, once the tree

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 00:0–0
Prepared using speauth.cls



ALGORITHMS FOR SUFFIX TREE CONSTRUCTION IN EXTERNAL MEMORY 13

7
a

6
b

5
a

9
dbcbaba

843210 7
a

6
b

5
a

9
dbcbaba

843210

R

0

ab

abcababd

R

0

abcababd

2

cababd

ab

7
a

6
b

5
a

9
dbcbaba

843210 7
a

6
b

5
a

9
dbcbaba

843210

R

0

cababd

2

cababd

ab

ab

5

d

7
a

6
b

5
a

9
dbcbaba

843210 7
a

6
b

5
a

9
dbcbaba

843210

R

0

cababd

2

cababd

ab

ab

5

d

7

d

7
a

6
b

5
a

9
dbcbaba

843210 7
a

6
b

5
a

9
dbcbaba

843210

Figure 10. The steps of building the sub-tree for prefix ab and input string X = ababcababd with the
algorithm by Hunt et al.[18]

for all suffixes starting with aa is built, it is never accessed again. The tree for each prefix is
constructed independently in main memory, and then is written to disk.

The number of partitions p is computed as the ratio of the space required for the tree of the
entire input string, STtotal, to the size of the available main memory M , i.e. p = |STtotal|/M .
Then, the length of the prefix for each partition can be computed as log|Σ| p, where |Σ| is the
size of the alphabet. This works well for non-skewed input data but fails if for a particular
prefix there is a significantly larger amount of suffixes. This is often the case in DNA sequences
with a large amount of repetitive substrings. In order to fit a tree for each possible prefix into
main memory, we can increase the length of the prefix. This, in turn, exponentially increases
the total number of partitions, and therefore, the total number of input string scans.

The construction of the sub-tree for prefix ab and input string X = ababcababd is shown
in Figure 10. Note that the sub-tree is significantly smaller than the suffix tree for the entire
input string. The pseudocode is given in Figure 9 [Bottom].

We remark that we iterate through the input string as many times as the total number of
partitions. The construction of a tree for each partition is performed in main memory. At the
end, the suffix tree for each partition is written to disk. Note also that in order to perform
the brute-force insertion of each suffix into the tree we need to randomly access the input
string X , which therefore has to reside in memory. Since the input string is at least an order
of magnitude smaller than the tree, this method efficiently addresses the problem of random
accesses to the tree in secondary storage, but cannot be extended to inputs which are larger
than the main-memory instantiation for holding X .

The algorithm performs much faster than the TOP-Q algorithm, despite the fact that its
internal time is quadratic in the length of the input string. This is because for p partitions
all p passes over the input string are performed in main memory, and the tree is traversed
in main memory as well. Thus, the algorithm performs only O(p) random accesses: namely,
when writing the tree for each partition. For the Human DNA of size up to 247 MB (Human
chromosome I) input, the suffix tree with Hunt et al.’s algorithm can be constructed in 97
minutes [36] compared to TOP-Q with 96 hours for the same input on the same machine.

Copyright c© 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2009; 00:0–0
Prepared using speauth.cls



14 M. BARSKY,U. STEGE AND A. THOMO

13

b

9

d

8

b

7

a

6

b

11

b

10

a

5

a

14

eacbaba

1243210 13

b

9

d

8

b

7

a

6

b

11

b

10

a

5

a

14

eacbaba

1243210

R

a

b

ab

R

ab b

ab

ab

Figure 11. Difference between the sparse suffix links [Left] and the traditional suffix links [Right].

The performance of Hunt et al.’s algorithm degrades drastically if the input string does not
fit the main memory and should be kept on disk. In this case we have O(pN) random accesses,
this time to the input string.

2.3. Distributed and paged suffix trees

A similar idea of processing suffixes of X separately for each prefix was developed in [7, 8]. The
distributed and paged suffix tree (DPST) by Clifford and Sergot [7], which was proposed first
in context of distributed computation, has all the properties to be efficiently implemented to
run using external memory. As before, the suffixes of X are grouped by their common prefix
whose length depends on the size N of X and the amount of the available main memory. The
number of suffixes in each subtree is small enough for the tree to be entirely built in main
memory. Therefore, random disk access to the sub-tree during its construction is avoided. The
main difference from Hunt et al.’s algorithm of the previous section is that the sub-tree for
each particular prefix is built in an asymptotic time linear in N and not quadratic. In order to
do so, the DPST algorithm uses the idea developed in [1] to build the suffix tree on words. The
main ideas in [1] are similar to the Ukkonen algorithm [37] described in Section 2.1. However,
the Ukkonen algorithm relies heavily on the fact that all suffixes of X are inserted, whereas the
suffix tree on words is built only for some suffixes of X , namely the ones starting at positions
marked by delimiters.

DPST applies this idea considering the particular prefix as the delimiter for producing the
sub-tree for this prefix. It introduces the idea of sparse suffix links (SSL) instead of regular
suffix links. A SSL in a particular subtree leads from each internal node vi with incoming
path label w to another internal node vj in the same sub-tree whose incoming path-label
corresponds to the largest possible suffix of w found in the same sub-tree (or to the root if the
largest such suffix is an empty string).

We explain the difference between the sparse suffix link and the regular suffix link in the
following example. Suppose we have a sub-tree for a prefix a for X = ababcababdababe (see
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Figure 12. Steps of the construction of the sub-tree for prefix a by the distributed and paged suffix
tree construction algorithm of Clifford and Sergot. Input string X = ababcababdababe.

Figure 11). In the regular suffix tree, the suffix link from the internal node with an incoming
path label abab leads to the node with the incoming path-label bab. However, in the sub-tree
for prefix a, there is no suffix starting with bab. So the longest suffix of abab which can be
found in this sub-tree is ab, and the SSL leads to the internal node with the incoming path
label ab.

Let us follow an example for the sub-tree construction for X = ababcababdababe and
prefix a in Figure 12. This sub-tree will contain only the suffixes of X starting at positions
0, 2, 5, 7, 10, 12. Thus, we need to insert only these six suffixes to the tree. First, we insert suffix
S0 by creating leaf L0. Next, we add S2 by finding that X [1] = X [3] and X [2] �= X [4]. We
split an edge and add leaf L2. Now it is the turn for suffix S5. Since the first four characters of
S5 correspond to some path in the tree, but X [9] = d does not. Therefore, we add leaf L5 and
create an internal node with incoming path label abab. We see that the longest suffix of abab
in this sub-tree is ab. We create a sparse suffix link from internal node for abab (marked by ��
in Figure 13) to the one for ab (marked by �). When we create a new leaf out of the ��-node
for suffix S10, we follow the SSL and create the same e-child from the �-node (Figure 13).

The use of these sparse suffix links for adding new leaves to the sub-tree allows to perform
the construction of each sub-tree in time linear in N . The DPST runs in time O(NP ) where
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Figure 13. Sample output of the DPST algorithm by Clifford and Sergot.

P is the total number of different prefixes. Despite the superior asymptotic internal running
time w.r.t. the previous algorithm, the practical performance and the scalability of the DPST
as implemented in [7] were inferior to the program by Hunt et al. [18] for the real DNA data
used in the experiments.

2.4. Top Down Disk based suffix tree construction (TDD)

Quadratic in the worst case, but a more elaborated approach of the Top Down Disk based
suffix tree construction algorithm (TDD)[36] takes the performance of the on-disk suffix tree
construction to the next level. The base of the method is the combination of the wotdeager
algorithm of Giegerich et al. [16] and Hunt et al.’s prefix partitioning described above. Being
still an O(N2) brute-force approach, TDD manages more efficiently the memory buffers and
is a cache-conscious method which performs very well for many practical inputs.

The first step of TDD is the partitioning of the input string in a way similar to that of
the algorithm by Hunt et al.. Now, the tree for each partition is built as follows. The suffixes
of each partition are first collected into an array where they are represented by their start
positions. Next, the suffixes are grouped by their first character into character groups. The
number of different character groups gives the number of children for the current tree node. If
for some character there is a group consisting only of one suffix, then this is a leaf node and
is immediately written to the tree. If there is more than one suffix in the group, the LCP of
all the suffixes is computed by sequential scans of X from different random positions, and an
internal node at the corresponding depth is written to the tree. After advancing the position
of each suffix by |LCP |, the same procedure as before is repeated recursively. The pseudocode
of the TDD algorithm is given in Figure 14.

To illustrate the algorithm, let us observe several steps of the TDD suffix tree construction
which are depicted in Figure 15. Suppose that we have partitioned all the suffixes of X by
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TDD algorithm
for each prefix PR of length prefix_len

collect suffixes starting with PR into array
sort suffixes by the first character 
output groups with 1 suffix as leaf nodes of the tree
push groups with more than 1 suffix into the stack
while stack is not empty

pop suffixes of the same group from the stack
find LCP of all suffixes in the group by sequential character comparisons
output internal node at the depth LCP
advance position of each suffix by LCP
sort suffixes by the first character
output groups with 1 suffix as leaf nodes of the tree
push groups with more than 1 suffix into the stack

Figure 14. Pseudocode of the TDD algorithm [36].
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Figure 15. The steps of the TDD algorithm [36] for building the sub-tree for prefix b and input string
X = ababcababd.

a prefix of length 1. This gives four partitions: a, b, c and d. We show how TDD builds the
suffix tree for partition b. The start positions of suffixes starting with b are {1, 3, 6, 8}. Since
the prefix length is 1, the characters at positions {2, 4, 7, 9} are sorted lexicographically. This
produces three groups of suffixes: a-group: {2, 7}, c-group: {4} and d-group: {9}. Since the
c-group and d-group contain one suffix each, the suffixes in these groups produce leaf nodes
and are immediately added to the tree. The a-group contains two suffixes, and is therefore a
branching node. |LCP2,7| = 2, and therefore the length of the child starting with a equals 2.
At this depth, the internal node branches at positions {4, 9}, which after sorting result into
two leaf nodes: the children starting with c and d respectively.

The main distinctive feature of the TDD construction is the order in which the tree nodes
are added to the output tree. Observe that the tree is written in a top-down fashion, and the
nodes which were expanded in the current iteration are not accessed anymore. This reduces
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the number of random accesses to the partially built tree and the new nodes can be written
directly to the disk. The number of random disk accesses is O(P ) as in Hunt et al.’s algorithm.
However, the size of each partition may be much bigger than before since now the main memory
buffer for the suffix tree data structure does not have to hold an entire sub-tree.

This pattern of accessing the tree was shown to be very efficient for cached architectures
of the modern computer. It was even shown that the TDD algorithm outperforms the linear-
time algorithm by Ukkonen for some inputs in case when all the data structures fit the main
memory. For the same input of 247 millions of symbols (Human chromosome I) [44], which
took about 97 minutes with the suffix-by-suffix insertion of Hunt, TDD builds the tree in 18
minutes [36].

As before, the algorithm performs massive random accesses to the input string when it
does the character-by-character comparisons starting at different random positions. The input
string for the TDD algorithm cannot be larger than the main memory.

Another problem of TDD is the suffix tree on-disk layout. The trees for different partitions
are of different sizes, and some of them can be significantly bigger than the main memory. This
poses some problems when loading the subtree into main memory for querying. If the entire
subtree cannot be loaded into and traversed in the main memory, the depth first traversal of
such a tree requires multiple random accesses to different levels of on-disk nodes.

2.5. The partition-and-merge strategy of Trellis

The oversized subtrees caused by data skew can be eliminated by using set of different-length
prefixes, as shown in [31]. In practice, the initial prefix size is chosen so that the total number
of prefixes P will allow to process each of the P sub-trees in main memory. For example, we
can hold in our main memory in total Tmax suffix tree nodes. The counts in each group of
suffixes sharing the same prefix are computed by a sequential scan of input string X . If a count
exceeds Tmax, then we re-scan the input string from the beginning collecting counters for an
increased prefix length. Based on the final counts, none of which exceeds Tmax, the suffixes
are combined into approximately even-sized groups. As an example consider the case when
suffixes starting with prefix ab occur twice more often than the suffixes starting with ba and
bb. We can combine suffixes in partitions ba and bb into a single partition b with approximately
the same number of suffixes as contained in partition ab. The maximum number of suffixes
in each prefix partition is chosen to ensure that the size of the tree for suffixes which share
the same prefix will never exceed the main memory. This is in order to ensure that each such
subtree can be built and queried in main memory.

Based on this new partitioning scheme, Phoophakdee and Zaki [31] proposed another method
for creating suffix trees on disk – the Trellis‖ algorithm. The main innovative idea of this
method is the combination of the prefix partitioning and the horizontal partitioning of the
input into consecutive substrings, or chunks. In theory, the substring partitioning does not
work for any input, since the suffixes in each substring partition do not run till the end of

‖Trellis stands for External Suffix TRee with Suffix Links for Indexing Genome-ScaLe Sequences.
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TRELLIS algorithm
partition X into k substrings
for each substring Xi

build suffix tree ST_Xi
for each prefix PR in collection of variable-length prefixes

find sub-tree starting with PR
write this sub-tree into a separate file on-disk

for each prefix PR in collection of variable-length prefixes
load from disk all sub-trees starting with PR
merge sub-trees into 1 sub-tree for prefix PR
write this sub-tree back to disk

Figure 16. Pseudocode of the Trellis algorithm.

the entire input string. However, this horizontal partitioning works for most practical inputs.
Consider for example the Human genome sequence of about 3 GB in length. In fact, there
is not a single string representing Human genome, but rather 23 sequences of DNA in 23
different Human chromosomes, with the largest sequence being only about 247 MB in size.
Those chromosome sequences represent natural partitions of the entire genome.

If the size of each natural chunk of the input does not allow us to build the suffix tree for it
entirely in main-memory, the chunk can be split into several slightly overlapping substrings.
We append to the end of each such substring except the last one, a small “tail”, the prefix of
the next partition. The tail of the partition must never occur as a substring of this partition.
It serves as a sentinel for the suffixes of the partition, and its positions are not included into
the suffix tree of the partition. In practice, for real-life DNA sequences, the length of such a
tail is negligeably small compared to the size of the partition itself.

After partitioning the input into chunks of appropriate size, Trellis builds an independent
suffix tree for each chunk. It does not output the entire suffix tree to disk, but rather writes to
disk the different sub-trees of the in-memory tree. These sub-trees correspond to the different
variable-length prefixes. Once trees for each chunk are built and written to disk, Trellis loads
into memory the subtrees for all the chunks which share the same prefix. Then it merges these
subtrees into the shared-prefix-based subtree for an entire input string. The pseudocode of the
Trellis algorithm is shown in Figure 16.

As an example, let us apply the Trellis method to our input string X = ababcababd. Let
the collection of prefixes for a prefix-based partitioning be {ab, ba, c, d}. Next, we partition X
into two substrings X1 = abab with “tail” c, and X2 = cababd. Note the overlapping symbol c
which is used as a sentinel for suffixes of X1. We build in memory the suffix tree for X1, which
is shown in Figure 17 [A], and we output it to disk in the form of two different subtrees: one
for prefix ab and the second for prefix ba. The same procedure is performed for X2 (Figure
17 [B]). Then, we load into main memory the subtrees for, say, prefix ab and we merge those
sub-trees into the common ab-subtree for the entire X .
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Figure 17. The steps of the Trellis algorithm applied to input string X = ababcababd. A. Building
the suffix tree for substring X1 = abab(c). B. Building the suffix tree for substring X2 = cababd.
C. Merging the sub-trees for prefix ab. The total size of the tree structures at each step allows to

perform each step in main memory.

The merge of subtrees for different chunks is performed by a straightforward character-by-
character comparison, which leads to the same O(N2) worst-case internal time as the brute
force algorithms described above.

Trellis was shown to perform at speed comparable to TDD. Further, Trellis does not fail
due to insufficient main memory (for holding the trees for each chunk or the subtrees with a
common prefix).

If we have K chunks and P prefixes in the variable-length prefixes collection, the number of
random disk accesses is O(KP ). Since both K and P depend on the length of the input string
N , the execution time of Trellis grows quadratically with the increase of N , and is therefore
not scalable for larger inputs.

During the character-by-character comparison in the merge step, the input string is randomly
accessed at different positions all over the input string. Therefore, the scalability of Trellis does
not go beyond the size of the main memory designated for the input.
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2.6. DiGeST and an external memory multi-way merge sort
A simple recent approach to construct suffix trees is based on an external memory multi-way
merge sort [14]. The DiGeST∗∗ algorithm proposed in [3] performs at a speed comparable with
TDD and Trellis, and scales for larger inputs since it does not use prefix-based partitioning, but
rather outputs a collection of small suffix trees for the different sorted lexicographic intervals.

As in Trellis, DiGeST first partitions the input string into k chunks. The suffixes in each
chunk are sorted using any in-memory suffix sorting algorithm (for example [25]). The suffix
array for each chunk is written to disk. To each position in this suffix array a short prefix
of the suffix is attached. These prefixes significantly improve the performance of the merging
phase.

After sorting the suffixes in each chunk, consecutive pieces of each of the k suffix arrays are
read from the disk into input buffers. As in the regular multi-way merge sort, a “competition”
is run among the top elements of each buffer and the “winning” suffix migrates to an output
buffer organized as a suffix tree. When the output buffer is full, it is emptied to disk. In order
to determine the order of suffixes from different input chunks, we first compare the prefixes
attached to each suffix start position. Only if these prefixes are equal, we compare the rest of
the suffixes character-by-character. This comparison requires that the input string be kept in
main memory.

Due to the character-by-character comparison of the suffixes, DiGeST runs in O(N2) internal
time. Recall that on average the performance is O(N log N). The same comparison is performed
in order to calculate the longest common prefix of the current suffix with the last suffix
previously inserted into the tree. The calculated |LCP | determines the place where the internal
node is created, and a new leaf for each suffix is added as a child of this internal node. In this
way we build the suffix tree in the output buffer.

Before writing the output buffer to disk, the lexicographically largest suffix in this tree is
added to a collection of “dividers” which serve locating multiple trees on disk. Since the output
buffer is of a pre-calculated size, all trees are of equal size, and thus, the problem of data skew
is completely avoided. Further, each tree is small enough to be quickly loaded into the main
memory to perform a search or comparative analysis. The pseudocode of DiGeST is given in
Figure 18.

While DiGeST still requires the input string to be in main memory, from an external memory
point of view, it is very efficient: the algorithm performs only two scans over the disk data
and furthermore accesses the disk mainly sequentially. From an internal running time point
of view, this algorithm still belongs to the group of brute-force algorithms with a quadratic
running time.

∗∗DiGeST stands for Disk-based Generalized Suffix Tree.
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DiGeST algorithm
partition X into k substrings
for each substring Xi

build suffix array SA_Xi
write SA_Xi to disk

Merge( )

Merge( )
allocate k input buffers and 1 output buffer
for each input buffer

load part of SA_Xi into input buffer
create heap of size k
read first element of each input buffer into a heap

while heap is not empty
transfer the smallest suffix of substring j 

from the top of heap into output buffer
find LCP of this suffix with the last inserted suffix
create a new leaf in the output suffix tree 
if output buffer is full

write it to disk

if input buffer j is empty
if not end of SA_Xi

fill input buffer j with the next suffixes
if input buffer j is not empty

insert next suffix from input buffer j into heap

Figure 18. Pseudocode of the DiGeST algorithm.

2.7. Suffix tree on disk layouts

We remark that most of the algorithms described above [7, 18, 36, 31, 3] do not deliver a single
suffix tree on disk, but rather a forest of suffix trees. This is useful from both the construction
and the query points of view. Regarding the query efficiency, if a single suffix tree is of a
size much larger than the available main memory, then searching for a pattern of length q
may incur q random I/Os plus one random I/O to collect each occurrence by reaching the
corresponding leaves. The need to partition the tree into meaningful partitions is even more
prominent for algorithms which require a depth-first traversal (DFS) of the entire tree, such
as finding a longest common substring, or finding the total number of all different substrings.
In these cases, the number of random I/Os will be O(N), and the performance of DFS-based
algorithms will severely degrade.

Thus, important practical requirements for the output trees are that each tree can be
sequentially loaded and traversed entirely in main memory and that each tree has some unique
identifier to be located quickly.

The most accepted scheme for tree partitioning is partitioning by prefix. For each prefix
there is a separate tree which contains all the suffixes sharing this prefix. The collection of all
possible prefixes of length p is of size P = O(|Σ|p). Note that, in order to search for a pattern,
we need to find the corresponding prefix, load the corresponding sub-tree by one sequential
read and then find all the occurrences of this pattern in this sub-tree. For the DFS, we read
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and analyze in main memory entire sub-trees, so the maximum number of random disk I/Os
equals the total number P of such sub-trees.

Constant-size prefixes are used in the algorithm by Hunt et al. [18] and in the TDD algorithm
[36]. This partitioning scheme works well except when the real life input data is so skewed that
for some prefixes the trees are very small, whereas for others so large that they can not be
entirely held in the available main memory.

Partitioning by the variable-length prefixes is used in Trellis [31] to solve the data skew
problem and is described in detail in Section 2.5. The search follows the same pattern as before.

DiGeST partitions the trees by lexicographic intervals of the suffixes. The 32-bit prefix of
the smallest and of the largest suffix in each tree is stored in the collection of dividers, and
the search starts by locating the proper interval and then loading into memory the entire
tree corresponding to this interval. All the trees are of equal size. For exact and approximate
pattern search the partitioning by intervals works quite well.

2.8. Summary

The main features of the practical EM algorithms for the suffix tree construction and some
performance and scalability benchmarks are summarized in the table of Figure 19. The fastest
and the most scalable algoritms [3, 31, 36] are able to build the suffix tree for up to 7GB of
genomic data in a matter of several hours on a single machine.

3. The remaining challenges

Despite these impressive results, practicality of the suffix tree construction algorithms for
massive string data sets is not yet achieved.

The largest challenge is to build suffix trees for strings larger than the main memory in a
reasonable time. The performance of all algorithms described above degrades drastically once
the input string outgrows the main memory and has to be accessed on disk. Note that building
suffix tree indexes for strings that do not fit the main memory is of big importance, because,
after all, if the input string is entirely in the main memory, then it might be possible to design
on-line searching algorithms which are faster than algorithms using disk-based indexes.

One of the first attempts to address this input-string memory bottleneck was undertaken
by the authors of Trellis with the improved method Trellis with string buffer (Trellis+SB)

¶These sample performances give an order of magnitude but are not directly comparable since they were
obtained using different machines (2GB of main memory each.)
‖The time for TDD was obtained by using a DNA encoding with 4 bits per character, since 3GB of DNA do
not fit the main memory of 2GB [36]. Trellis and DiGeST use a 2-bits-per-DNA-character encoding and do
not include the non-DNA characters such as “N” which stands for the undefined DNA symbol. DiGeST maps
the new positions after “slicing out” the unknown characters to the original positions in the raw sequence.
Note that if we index all the characters which appear in genomic sequences, we will face the problem of invalid
common substrings of significant length which consist of long stretches of “N”s and do not represent actual
common substrings.
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Method Underlying Asymptotic Max. Sample Scalability:
name main memory internal number performance¶ (the largest

algorithm running of random for ≈ 50MB input
time disk I/Os of Human handled

chromosome I with 2GB
of RAM) ‖

TOP-Q [4] Suffix tree N N 7 h [31] ≈ 50MB:
construction 4 hours [4]
by Ukkonen [37]

DPST [7] Suffix tree on N × P P Not ≈ 187MB:
words [1] reported time not
for each partition reported

Hunt et al. Brute force N2 × P P 12 min [36] ≈ 256MB:
[18] for each partition 13 h [18]
TDD [36] Wotdeager [16] N2 × P P 2 min [36] ≈ 3GB:

for each partition 30 h [36]
Trellis [31] Ukkonen [37] N + (N

P )2 K + KP 2 min [31] ≈ 3GB:
for each partition, 4 h [31]
brute force
for merge

DiGeST [3] Suffix array [25] N log N+ K + K2 2 min [3] ≈ 7GB:
for each partition, +N2

K 6 h [3]
multi-way merge
sort for merge [14]

Figure 19. The key features of the practical algorithms for the external memory suffix tree construction.
Here, N denotes the total input size, P the number of partitions by common prefixes, K the number

of substring partitions.

[32]. The authors designed a string buffer which keeps the characters that are more likely
to be accessed in main memory, and loads the rest from disk when needed. Since suffix-tree
edges contain positions of the corresponding substring inside the input string, Trellis+SB
replaces these positions wherever possible by positions in one representative partition. This
small representative part of the input is kept in memory during the merge and increases the
buffer hit rate. Another technique used by Trellis+SB is the buffering of some initial characters
for each leaf node. The combination of these techniques allows in practice to reduce the number
of accesses to the on-disk input string by 95% (for DNA sequence of the Human genome). The
authors report that they were able to build the suffix tree for the Human genome using 512MB
of memory in 11 hours on a modern machine. The performance for larger inputs than 3GB
was not reported, maybe because the remaining 5% of an input of, say, 10GB translate into
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Figure 20. Disk-friendly pattern search in the suffix tree for string X = ababcababd. The first characters
of each edge are implied by the position of a child in the array of children. The length of each edge is
shown, which is deduced from the start and end positions of edge-label substrings. For query q1 = aaab
we match q1[0] and q1[3], and then we retrieve the leaf L0 as well as the substring X[0, 3]. Verification
fails, since aaab �= abab. Pattern q1 = aaab is not a substring of X. For query q2 = abab we follow the
same path. This time the verification is successful, since q2 = X[0, 3]. We report all the occurrences
of q2 in X by collecting leaves 0 and 5. In each case, only one random access to the input string was

performed.

500 million random disk I/Os. This method works only if the representative partition can be
found for the entire input which is not always the case. There is currently no general practical
solution for building suffix trees for strings larger in size than the main memory.

With a look at the potential applications of the on-disk suffix trees, we notice another
important problem. A suffix tree does not store explicitly the labels of the edges. The edge
labels are represented by an ordered pair of integers denoting its start and end positions in
the input string. Let us assume that we have constructed a suffix tree for an input string
significantly larger than the main memory. In this case the input string is entirely on disk.
Note that, to search for a query string q in this tree by a traditional suffix tree traversal [17]
we (näıvely) compare the characters of q to the characters of X as indicated by the positions
of the edge labels. This type of search, unfortunately, requires multiple random accesses to the
input string, and this is quite inefficient when X is on disk. This takes in the worst case as
many random accesses to the input string as the length of the query.

However, massive random access to X during a search can be avoided if we follow the
PATRICIA search algorithm originally described in [28]. The outgoing edges from an internal
node are indexed according to the character specified by their start positions. The search
consists of two phases. In the first phase, we trace a downward path from the root of the
tree to locate a leaf Li, which does not necessarily match all the characters of query string q.
We start out from the root and only compare some of the characters of q with the branching
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characters found in the arcs traversed until we either reach leaf Li, or no further branching is
possible. In the latter case, we choose Li to be any descending leaf from the last node traversed,
say node v. In the second phase, we read substring X [i, i+ |q|] from the input string X which is
on disk, by that performing only one random access to the input, instead of |q| as in the usual
suffix tree search. We compare X [i, i + |q|] to q; if both are identical, we report an occurrence
of q in X and collect all the remaining occurences from the leaf nodes below v (if v is not a
leaf). Consider, for example, the suffix tree for X = ababcababd and the two queries q1 = aaab
and q2 = abab shown in Figure 20. By matching only the first and the third characters of q1 or
q2, and after that verifying the queries against suffix S0, we perform only one random access to
the input string per query. This example shows a great potential for suffix trees on disk. Such
an efficient (from the external memory point of view) search does not yet exist for alternative
indexing structures, such as suffix arrays.

However, this type of search cannot be performed with such an efficiency if we want to find
an approximate occurrence of the query string in X . The proposed algorithm for approximate
matching using suffix trees [29] requires the comparison of actual characters of the string in
order to find an edit distance between the different substrings of q and the substrings of edge-
labels. Therefore, the approximate pattern matching algorithm proposed in [29] will not work
efficiently in external memory settings in case that the input string cannot be held in main
memory. This requires the development of new approaches for approximate pattern matching.
The adaptability and the efficiency of other algorithms using on-disk suffix tree layouts is yet
to be investigated.

The important drawback for algorithms with a satisfactory practical performance (cf.
[36, 31, 3]) is the internal asymptotically quadratic time of these algorithms. Though
O(N log N) on average, this time increases dramatically if we work on the suffix tree
construction for similar DNA sequences. For example, in order to compare DNA sequences
of different genomes of the same species, when building the generalized suffix tree for these
sequences, all the above algorithms fail to perform in a satisfactory time.

The last note about differences between on-disk and in-memory suffix trees is the usefulness
of suffix links. Recall that suffix links connect each internal node representing some substring
αy (where α is one character long) of X with some other internal node where substring y ends.
The suffix links, a by-product of the linear time construction algorithms, can be useful by
themselves. An example is finding the occurrences of all substrings of the query q in the input
string X . In this case, after locating some prefix q[0, i] of the query string, we follow the suffix
link from the lowest internal node of the path found in the tree, and check the next substring
starting from the node at the other end of the suffix link. By this we save as many character
comparisons as the depth of this internal node from the root. Though not used during most
of the suffix tree construction algorithms presented here, suffix links can be recovered in a
post-processing step [31]. We believe that these recovered suffix links in the external memory
settings are of a limited use, since the link leads to the different subtree layered in distant disk
locations. This means that an assumed “constant-time” jump following a suffix link causes in
fact an entire random disk access. Note that finding all substrings of the query will require
the same number of disk accesses using suffix links as checking all different suffixes of q using
the PATRICIA search in the corresponding subtrees. As for other algorithms which make use
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of suffix links (see for example [22, 23]), it seems that they might require new non-trivial
adaptations when moved from the in-memory to the on-disk settings.

4. Theoretical basis for future research

In parallel to the development of practical software for the suffix tree construction on disk,
promising theoretical results for this problem were obtained.

As a matter of fact, an algorithm which runs in O(SORT (N)) time in the theoretical DAM
computational model was developed in [12]. SORT (N) means that we can build the suffix
tree for the input string of any size with a time complexity equal to the constant number of
external memory sorts, applied to integers. This algorithm builds separate suffix trees for even
and odd suffixes and then merges them into the suffix tree for X . The merge phase is the real
bottleneck of this algorithm, and it is not clear if it can possibly be implemented in practice,
as was also noted in [35]. The details of this external memory algorithm are extremely complex
preventing, so far, an implementation of this algorithm.

More promising results were obtained for building a suffix array of X . As was shown in
[12], not only can we convert each suffix tree into a suffix array in linear time by a depth-first
traversal of the suffix tree, but we can also convert the suffix array into a suffix tree in linear
time, assuming that the suffix array is augmented with the longest common prefix information
between consecutive suffixes in the suffix array. This is performed by simulating an Euler tour
of the tree under construction using the LCP information.

Following this direction, in order to develop a practical algorithm to construct suffix trees
for input strings of any size, we need three essential steps to be efficient from an external
memory point of view: building the suffix array, generating an array of LCPs and converting
this enhanced suffix array into the suffix tree.

As for the suffix array construction, the optimal results obtained for the DAM computational
model look very promising. The SKEW algorithm, proposed in [19] and generalized into the
DC (Difference Cover) algorithm in [20], is a simple and elegant algorithm which builds suffix
arrays on disk in O(SORT (N)) time. This algorithm was first implemented in the DC-3
program [10] and has demonstrated a promising practical performance for large inputs. This
algorithm can be used as a first step to overcome the input string size bottleneck on the way
to fully-scalable suffix trees.

The conversion of a suffix array into a suffix tree turned out to be disk-friendly, since reads
of the suffix array and writes of the suffix tree can be performed sequentially.

However, the suffix array needs to be be augmented with the LCP information in order to
be converted into a suffix tree. There exist linear-time, space-efficient and easy-to-implement
LCP computation algorithms (see for example [21, 26]) which, however, perform random access
to at least one intermediate array of size N . These algorithms would severely degrade in
performance once N is larger than the main memory, therefore they need to be modified for
such a case. Theoretical results for computing the LCP in external memory settings in time
O(SORT (N)) were presented in [6]. These results are based on range minima queries which
are performed using special tree-like data structures and an external memory sort of queries
to minimize random disk I/Os. These results were used by the authors of the DC algorithm
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[20] to show how to compute the LCP enhancement for their suffix array. It is currently not
clear how efficient the presented algorithm for the LCP computation would be in a practical
implementation.

It may be only one step which divides us from a scalable solution for constructing suffix trees
on disk for inputs of any type and size. Once this is done, a whole world of new possibilities
will be opened, especially in the field of biological sequence analysis.
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