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We present a novel graph model and an efficient algorithm for solving the “threshold all against
all” problem, which involves searching two strings (with length M and N respectively) for all

maximal approximate substring matches of length at least S, with up to K differences. Our
algorithm solves the problem in time O(MNK3), which is a considerable improvement over the
previous known bound for this problem. Also, we provide experimental evidence that in practice,
our algorithm exhibits a better performance than its worst case running time.
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1. INTRODUCTION

An important problem in the field of string matching is the extraction of exact
and approximate common patterns from two or more strings. In fact, in particular
application areas, such as the analysis of biological sequences, the extraction of
approximate common patterns is of primary (or great) importance. This is because
biological sequences often have a high mutation rate, and an analysis based only
on exact common patterns can miss a great deal of useful information.

In contrast to finding exact patterns, the extraction of approximate patterns
is computationally much more demanding. An efficient solution to this problem
would greatly help important research in biology, such as locating regulatory sites
and drug target identification.

In Computer Science, the problem of finding all approximate common patterns
of two given strings is known as “(full) all-against-all approximate substring match-
ing” (see [Baeza-Yates and Gonnet 1990; Gusfield 1997]), and is notorious for its
computational difficulty. In practice, various constraints are set for the sought so-
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lutions, such as the maximum allowed number of approximations or “errors” and
the minimum allowed length of substrings. Formally, the problem we study in this
paper is: Given two strings s and t and integer parameters S and K, find all pairs
(s′, t′) of maximal substrings from s and t respectively, such that their length is at
least S, and the edit distance1 between them is at most K.

Our contribution is a fast algorithm for solving the above “threshold all-against-
all” problem for two strings.

Pattern discovery methods in the literature may be classified into two groups:

—Probabilistic methods, such as Gibbs motif sampling [Lawrence et al. 1993], ex-
pectation maximization [Bailey and Elkan 1995], maximization of the information
content [Roth et al. 1998], and Gibbs Sampling over suffix trees [Rocke 2000].

—Deterministic methods, such as [Baeza-Yates and Gonnet 1990; 1999; Vilo 2002]
based on a hybrid dynamic programming approach, in which the edit distance
computation (using dynamic programming) is combined with (or guided by) the
use of suffix trees.

Probabilistic algorithms have a satisfactory running time performance, but there
is no guarantee that every solution is produced.

We investigate a new deterministic method. Differently from the methods of the
second group, it neither uses suffix trees nor dynamic programming. Instead, our
method is based on a novel graph approach and yields feasibility in both time and
space without sacrificing the completeness of the solution.

Observe that for two given strings s and t of lengths M and N respectively, a
näıve approach to “all-against-all approximate substring matching” is to exhaus-
tively test each pair of substrings from s and t. This approach has a time complexity
of O(M2N2), as it requires the computation of O(MN) cells of dynamic program-
ming table for each MN pair of possible starting locations.

A better method for the “threshold all-against-all” problem was first proposed by
Baeza-Yates and Gonnet in [Baeza-Yates and Gonnet 1990] and [Baeza-Yates and
Gonnet 1999]. Recently, Vilo [Vilo 2002] extended the approach of [Baeza-Yates
and Gonnet 1990; 1999] to better target specific applications, preserving however
the main algorithmic components of [Baeza-Yates and Gonnet 1990; 1999]. Thus,
we will mention here some features of the approach by Baeza-Yates and Gonnet.
Notably, by avoiding the examination of repeating substrings, their solution is sig-
nificantly better than the näıve approach with respect to the average time com-
plexity. In their method, each input string is organized as a suffix tree structure,
and the order of substring comparisons is guided by a depth-first traversal of the
nodes of the suffix trees. The average-time complexity lies between O(MN) (best
case) and O(M2N2) (worst case), but closer to O(M2N2) (see [Gusfield 1997]).

Setting a threshold criterion bounding the error number, e.g., allowing at most K
differences in substring matches, significantly improves the performance of Baeza-
Yates and Gonnet’s algorithm. The reason is that the value of K can be directly
incorporated into their algorithm to cut down the depth of the suffix tree traver-
sal. As we verify experimentally, for small values of K, Baeza-Yates and Gonnet’s

1The edit distance in this paper is a unit-cost edit distance.
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algorithm performs well. However as K increases, the number of suffix tree nodes
that are examined grows very fast.

Our approach bears some similarity with a general technique known as sparse
dynamic programming, which handles the sparsity in dynamic programming tables
in a clever way (cf. [Eppstein et al. 1992a; 1992b]). The main difference of our
approach from sparse DP lies in our novel graph model, which is not based on a
dynamic programming table. Also, our optimized depth-first search yields a more
efficient solution over the dynamic programming method.

1.1 Our Approach

We cast the problem into a new problem of finding “maximal paths” in a spe-
cial “matching graph.” Via a careful study of this graph, we are able to derive
interesting and useful properties that help us in devising a highly optimized depth-
first search procedure to determine the maximal paths, which correspond to the
solutions of the original string problem.

Our proposed algorithm runs in O(MNK3) time, which is a significant improve-
ment over Baeza-Yates and Gonnet’s algorithm. Moreover, we experimentally show
that our algorithm scales quadratically in K (without reaching the cubic upper
bound) and it outperforms Baeza-Yates and Gonnet’s algorithm by an order of
magnitude.

Also, we stress that our algorithm has an additional nice feature: it reversely
depends on the alphabet size. As the size of the alphabet grows, the running time
of our algorithm decreases considerably.

We note that [Barsky et al. 2006] is a short version of this paper. However, in
[Barsky et al. 2006], we have only presented the high level ideas without giving
proofs, detailed examples, and full experimental evaluations. Besides providing the
complete development of our algorithm along with examples and full experimental
evaluations, we also accompany the current paper by a software implementation in
Java.

The remainder of this paper is organized as follows. Section 2 introduces our
new graph model. Section 3 describes the details of our algorithm. In Section 4
we present performance results and compare them with an optimized variant of
Baeza-Yates and Gonnet’s algorithm. In Section 5 we discuss some further related
work. Section 6 concludes the paper.

2. A GRAPH MODEL FOR THE ALL-AGAINST-ALL SUBSTRING MATCHING

Let Σ be a finite alphabet. A sequence of letters a1a2 . . . aN , where ai ∈ Σ (for
1 ≤ i ≤ N), is called a string over Σ. We denote strings with s and t. Given a
string s, we denote its i-th letter with s[i], and we denote a substring of s starting
at position i and ending at position j (where i ≤ j) with s[i, j]. The letters of s
at positions i and j are included in the substring s[i, j], and thus s[i, j] has length
j − i + 1.

For any two strings s and t, we can “transform the first string into the second”
by applying a sequence of the classical edit operations: insertion of a letter, deletion
of a letter, and substitution of a letter by another letter. These edit operations are
referred to as errors.

Let the edit distance for two strings s and t be the minimum number of edit

ACM Journal Name, Vol. V, No. N, December 2007.



4 · Marina Barsky et al.

operations needed to transform s into t. Further, we say pair (s, t) is a K-bounded
approximate match if the edit distance between s and t is at most K.

Now consider two strings s and t over Σ, with lengths M and N respectively.
The problem to solve is to find all approximate substring matches with at most K
errors and of length greater than some threshold S.

Formally we have:

Problem 2.1. All error-bounded approximate matches

Input: Strings s and t over alphabet Σ, and positive integers K and S.
Output: All error-bounded approximate maximal matches (s[i, j], t[k, l]) such that

(1) the edit distance between s[i, j] and t[k, l] is at most K and

(2) the lengths of both s[i, j] and t[k, l] are at least S.

Observe that in the above definition we are looking for maximal matches, with
respect to the length. In other words, if a pair of substrings of sufficient lengths
has an edit distance of less than K we do not report it immediately. Instead we
try to extend the solution as long the accumulated errors do not exceed K. If it
cannot be extended further we report it as a maximal solution. Note that this is
not a limitation, because the full set of all substring pairs can easily be obtained
from the maximal solutions.

We solve Problem 1 by casting it to an equivalent problem on graphs induced by
a “matching matrix,” which is defined as follows.

Let s and t be two given strings. We define the matching matrix2 of s and t
(Ms,t) as

Ms,t[i, j] =

{

1 if s[i] = t[j]
0 otherwise.

We omit the subscripts whenever they are clear from the context. An example of a
matching matrix for strings ababacbbbc and aacbacacab is shown in Figure 1 [left].

Based on matching matrix M, we define a weighted directed graph GM with
vertices vij corresponding to the 1-elements of the matrix, and with (directed)
edges defined in a “top-down” and “left-right” fashion as follows: there is an edge
e(vij , vkl) iff i < k and j < l. Figure 1 [right] illustrates the nodes and some of the
edges of the GM graph based on the matrix M in the same figure [left].

We define the cost c(vij , vkl) of an edge e(vij , vkl) to be c(vij , vkl) = max(k −
i, l − j)− 1. A path in graph GM is a sequence of vertices connected by edges. For
a path in GM, we define two characteristic properties: the “match length” and the
“error number,” which are as follows.

Definition 2.2. Let π be a path starting at vij and ending at vkl. Then:

—The match length of π is defined as ML(π) = min(k − i + 1, l − j + 1).

—The error number, EN(π), is defined as the cost of the path π, that is the sum
of all costs of edges in π.

Note that ML(π) corresponds to the length of the shorter of the two substrings
s[i, k] and t[j, l].

2This matrix is also know as “dot plot” in the Bioinformatics literature.
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Fig. 1. [Left] Matching matrix and partial induced graph. [Right] Some edges of cost at most 3
are shown.

Our choice of naming is based on the semantics of the paths between two vertices.
In essence, a path from vij to vkl outlines a sequence of edit operations that realizes
an (approximate) match of s[i, k] with t[j, l].

Interestingly, the graph GM possesses a very desirable property. Namely, for any
two vertices vij and vkl, the error number of the shortest path in GM, going from
vij to vkl, equals the edit distance between the substrings s[i, k] and t[j, l].

Although intuitively right, a formal proof needs special care. Further, observe
that GM is not a dynamic programming (induced) graph (also called edit graph in
[Gusfield 1997]); DP graphs have been very well studied in the literature. However,
to the best of our knowledge there is no work that formally studies the properties
of GM graph.

In order to show the claimed property, we use the notion of an edit transcript,
defined as a string over the alphabet {M,D, I, F}, where the letters stand for
match, deletion, insertion, and mismatch respectively. An edit transcript describes
a transformation of one string into another [Gusfield 1997] (see Figure 2 as an
illustration). Each possible way to transform s[i, k] into t[j, l] using edit operations
can be expressed by some edit transcript. In general, for two strings, there may be
many different edit transcripts transforming one string into another. Clearly, for
any possible pair of substrings in s and t, we are looking for an edit transcript with
a minimum possible number of edit operations.

Consider the substrings s[i, k] and t[j, l] with s[i] = t[j] and s[k] = t[l]. Such
substrings correspond to the path between two matches in the matching matrix
(i.e. M[i, j] and M[k, l] are equal to 1).

Lemma 2.3. There exists an edit transcript for s[i, k] and t[j, l] with cost (total
number of edit operations) at most max(k − i, l − j) − 1.

Proof. Without loss of generality let s[i, k] be shorter than t[j, l]. Then max(k −
i, l − j) − 1 = l − j − 1, i.e. equal to the length of t[j + 1, l − 1]. Now, an edit
transcript with the claimed cost can be obtained to reflect the following procedure.

First align s[i, k−1] with the prefix of t[j, l] for a cost of at most (k−1)−i+1−1 =
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Fig. 2. Examples of legal and illegal edit transcripts. M stands for match, F stands for substitution,

I stands for insertion, and D stands for deletion.

k − i − 1 substitutions (recall that s[i] = t[j]). Then, insert spaces at the end of
s[i, k− 1] to fully align it with t[j, l− 1]. Since s[k] = t[l], we get a full alignment of
s[i, k] with t[j, l]. It is easy to see that the total cost of the transcript corresponding
to this alignment is at most l − j − 1 edit operations.

In line with the above lemma, we define the concept of a legal edit transcript
as follows. For this let consecutive matches in an edit transcript be two matches
(“M ’s”) without any other match in between.

Definition 2.4. Consider an edit transcript for substrings s[i, k] and t[j, l]. Fur-
ther, let s[x] = t[v] and s[y] = t[w] for i ≤ x < y ≤ k and j ≤ v < w ≤ l be two
arbitrary consecutive matches in this edit transcript. We call the edit transcript
legal if the number of edit operations between any such pair of consecutive matches
does not exceed max(y − x,w − v) − 1.

To illustrate, Figure 2 [left] shows an example of an illegal edit transcript for
the strings abced and aebced. The transcript is illegal because the number of edit
operations (equal to 5) exceeds the total number of letters between the first and
last positions of the longer string. The same figure [middle] shows a legal edit
transcript for the same strings, while on the right is shown an edit transcript with
the minimum possible amount of edit operations (equal to the edit distance).

We also observe that the number of edit operations between two consecutive
matches s[x] = t[v] and s[y] = t[w] in an edit transcript cannot be less than
(surprisingly the same bound as before) max(y − x,w − v)− 1, regardless whether
the transcript is legal or not. The reason is that there are no other matches between
two consecutive matches. Therefore, the total number of edit operations cannot be
less than the larger number of characters between two matches.

Thus, in a legal transcript, the number of edit operations between two consecutive
matches (M ’s) s[x] = t[v] and s[y] = t[w] is in fact equal to max(y − x,w − v)− 1.
We show the following lemma.

Lemma 2.5. Let s and t be two strings over alphabet Σ. For any legal edit
transcript between two substrings s[i, k] and t[j, l], there exists a path π between
vertices vij and vkl in GM such that EN(π) is equal to the number of edit operations
in this edit transcript.

Proof. Let us consider some legal edit transcript for s[i, k] and t[j, l]. We show
that we can find a path in GM, which passes through vertices corresponding to the
transcript matches, and whose error number is equal to the transcript cost (number
of edit operations).

ACM Journal Name, Vol. V, No. N, December 2007.
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Let s[x] = t[v] and s[y] = t[w] be two consecutive matches in this transcript.
From the above discussion, we know that the number of edit operations between
these two matches (in the transcript) is equal to max(y − x,w − v) − 1.

By the construction of GM, we have that vxv and vyw are vertices in GM, and
e(vxv, vyw) is an edge in GM. The cost of this edge, by definition, is equal to
max(y − x,w − v) − 1.

Hence, we can always find a path π from vij to vkl with error number equal to the
number of edit operations in our edit transcript. Namely, π consists of the edges
connecting the vertices corresponding to the matches in the edit transcript.

We are ready to prove our characterization theorem.

Theorem 2.6. The edit distance between s[i, k] and t[j, l] is equal to the error
number of the cheapest path(s) from vij to vkl in GM.

Proof. The edit distance between s[i, k] and t[j, l] corresponds to the number of
edit operations in some edit transcript. Such an edit transcript surely is a legal
one, and it has the minimum possible number of edit operations. From this and
Lemma 2.5, we conclude that the path corresponding to this edit transcript is a
cheapest path from vij to vkl in GM.

Clearly, only the cheapest paths from vij to vkl have an error number which
is equal to the edit distance between s[i, k] and t[j, l]. We call a path with error
number less than or equal to K a path below (error) threshold. We present now the
following problem.

Problem 2.7. All paths below threshold
Input: Graph GM for two strings s and t, and positive integers K and S.
Output: All maximal paths below threshold K, and with match length at least S.

Based on Theorem 2.6 we conclude that:

Corollary 2.8. The problem all error-bounded approximate matches can be
reduced to the all paths below threshold problem.

We show in Subsection 3.1 how to construct, in linear time and space, an instance
for all paths below threshold from an instance of all bounded approximate matches.

How do solutions for all paths below threshold look like? We remark that in GM

there can exist multiple maximal paths below threshold connecting the same two
vertices vij and vkm. However, we need to detect only one such path in order
to produce (s[i, k], t[j,m]) as an approximate match. Based on the properties of
GM that we show in the next section, we devise a highly optimized depth-first
search approach, which takes special care of path expansions and overlap. This
way we avoid shortest path methods, which are associated with high overhead and
rigidity of path expansions. Still we produce best maximal paths, even without
using shortest path methods.

Further, observe that every solution path π is a path between two character
matches. Thus, the transcript for a substring match (s[i, k], t[j,m]) starts and ends
with a character match, and solutions having an error number less than K can be
extended by up to K − EN(π) end gaps. It is easy to see that, from the solution
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set for Problem 2.7, all these solutions for Problem 2.1 can be produced in linear
time.

We conclude this section with a remark on the maximality of the paths versus
the maximality of the solutions to Problem 2.1. Namely, each maximal solution
to Problem 2.1 has a corresponding maximal path, which is a solution to Problem
2.7. However, there are maximal paths produced as solution to Problem 2.7, which
correspond only to sub-solutions (i.e. non-maximal solutions) to Problem 2.1. We
illustrate such cases in Subsection 3.3. Although these sub-solutions can be elim-
inated in a post-processing step, we show in Subsection 3.3 how to eliminate the
paths producing sub-solutions during the main processing of our algorithm.

3. SOLVING “ALL PATHS BELOW THE THRESHOLD”

In this section we present our algorithm “All Paths Below Threshold” (APBT),
which solves Problem 2.7 in O(MNK3) time.

3.1 Constructing the Matching Matrix

Clearly, we can avoid explicitly building the matching matrix Ms,t. For this, when
we are about to access, say cell Ms,t[i, j], we only need to test on the fly whether
or not s[i] = t[j]. However, since the same cell might be accessed multiple times,
comparing on the fly characters adds considerable time to the overall execution.
For this reason, we present here how to construct the (boolean) matching matrix
Ms,t[i, j] in only linear time and using space of O(N · |Σ| + M) (where |Σ| is the
size of the alphabet) as opposed to the näıve construction, which takes quadratic
time and space.

We read the string t from left to right. When we read a letter a, say at position
i of t, we first check if we have a bit array representing this letter. If not already
created, we create a new bit array BAa of size N , and initialize its bits to 0.

We set to 1 the ith bit in this BAa array. At the end of the scanning process, each
array BAa records all the positions in t where the corresponding letter a occurs.
Formally,

BAa[i] =

{

1 if t[i] = a
0 otherwise.

After this, we scan the other string s. For each letter a that we read from s, we
create a pointer to the previously constructed array BAa. At the end of scanning we
obtain an array of M pointers, each pointing to some bit array. Note that we only
scan once both s and t, and the total memory we need for Ms,t is O(|Σ| ·N + M),
where M (the length of s) is the number of pointers to the bit vectors.

Let’s turn our attention to graph GM. We stress here that we never explicitly
construct and store it, remaining so linear with respect to space. Rather, as we
show, we traverse it by constructing the needed paths “on the fly.”

3.2 A Single-Step Path Expansion

In our search for all maximal paths below threshold K, we use an optimized depth-
first search. We scan the matching matrix in row-major order, i.e., we scan the first
row from left to right, then the second etc. When a vertex of GM is encountered
during the scan of M, we initialize a path π with EN(π) = 0 and ML(π) = 1.

ACM Journal Name, Vol. V, No. N, December 2007.



A Graph Approach to the Threshold All-Against-All Substring Matching Problem · 9

●●●9c

●●8b

●●7b

●●6b

●●●5c

●●●●●4a

●●3b

●●●●●2a

●●1b

●●●●●0a

9876543210s

bacacabcaat

●●●9c

●●8b

●●7b

●●6b

●●●5c

●●●●●4a

●●3b

●●●●●2a

●●1b

●●●●●0a

9876543210s

bacacabcaat

●●●9c

●LM8b

●G●H7b

●CKID6b

●●●5c

●●●●●4a

●F●E3b

●●●●●2a

●B●A1b

●●●●●0a

9876543210s

bacacabcaat

●●●9c

●LM8b

●G●H7b

●CKID6b

●●●5c

●●●●●4a

●F●E3b

●●●●●2a

●B●A1b

●●●●●0a

9876543210s

bacacabcaat

Fig. 3. [Left] Target square for path π going from v00 to v21, K = 5 and κ = 4. [Right] The area

of the target square decreases as the accumulated error number increases: ABCD is the target
square for the path starting at v00; EFGH is the target square for the expanded path ending at
v21; IKLM is the target square for the further expanded path ending at v52.

Then, the algorithm recursively builds all the possible expansions of this initial path
by adding one vertex at a time and by keeping track of the error numbers of the best
paths found so far. Such error numbers are used as bounds for future candidates.
As path π is constructed, the algorithm checks the following. If no more vertices
can be added without exceeding threshold K, then we stop the further expansion
of π, and check whether ML(π) ≥ S. If true, then we consider path π completed
and report it as a solution. Otherwise, path π is aborted. Obviously, we also stop
expanding a path when the last row or last column of the matching matrix Ms,t is
reached.

Next we describe in detail a single-step path expansion. Since the error number
of a path cannot exceed K, an edge to be appended to a path clearly has to have
a cost of at most K. As a consequence, all edges in GM of cost higher than K are
excluded from further consideration.

Consider a path π with error number EN(π), which ends at vertex vij . From
the above discussion, it is clear that for a single-step expansion of π we need to
search (in M) for a possible “next vertex” only inside square ABCD, with top-left
corner A = (i + 1, j + 1), and bottom-right corner C = (i + 1 + κ, j + 1 + κ), for
κ = K − EN(π). We call square ABCD the target square for path π at vertex vij

(see Figure 3 [left]).
Note that, as the error number of the growing path increases, the area of the

corresponding target square decreases (see Figure 3 [right]).
On the first sight it seems that for any vertex vij in GM there are at most

(κ + 1) × (κ + 1) outgoing edges to be considered. Next, we show how to reduce
the number of edges for consideration even further. Toward this end, we introduce
the following definitions regarding diagonals in the matching matrix M.

Definition 3.1. Let (i, j) be an arbitrary cell in the matching matrix M.

(1) The (i, j)-main diagonal for M is the sequence of (i + p, j + p)-cells in M,
where 0 ≤ p ≤ min{M − i,N − j}.
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vij

vkl
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vij

vkl
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Fig. 5. [Left] Reverse Triangle Inequality: c(vij , vkl) + c(vkl, vmn) < c(vij , vmn) [Right] Two-

edge paths between vij and vxy . We show that c(vij , vkl)+c(vkl, vxy) = c(vij , vkm)+c(vkm, vxy).

(2) Let q be a value between 0 and N − j. The (i, j)-q-upper diagonal is the
(i, j + q)-main diagonal.

(3) Let r be a value between 0 and M − i. The (i, j)-r-lower diagonal is the
(i + r, j)-main diagonal.

Figure 4 illustrates the above definitions. Note that the (i, j)-main diagonal can
be considered as (i, j)-0-upper diagonal as well as (i, j)-0-lower diagonal.

For the further development of our method, it is useful to visualize the cells on
a given diagonal as points on a two-dimensional plane. Then, a (given) diagonal
can be visualized as a straight line passing through these points, and forming a 45
degree angle with the horizontal and vertical axes (cf. Figure 4).

Let π be a path in GM ending at vertex vij and with EN(π) < K.
Now, assume that vkl and vmn are two vertices in the target square for π at vij ,

which satisfy the following conditions (illustrated in Figure 5 [left]):
(C1) i < k < m and j < l < n,
(C2) l − j ≥ k − i, and
(C3) n − l ≥ m − k. From condition C1, we know that the edges e(vij , vkl),
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e(vkl, vmn), and e(vij , vmn) do exist in GM. Condition C2 is equivalent to k−i
l−j

≤ 1

and therefore to k−i
l−j

≤ tan(45◦). This means, that the line segment connecting

(k, l) and (i, j) forms an angle less or equal to 45◦ with the horizontal axis (see
Figure 5 [left]). We conclude that position (k, l) lies on an upper diagonal with
respect to (i, j).

Reasoning similarly, condition C3 implies that position (m,n) lies on an upper
diagonal with respect to (k, l). We show the following theorem.

Theorem 3.2. (Reverse triangle inequality) Let π be a path in GM ending at
vertex vij and with EN(π) ≤ K. Further assume that vkl and vmn are two vertices
in the target square for π at vij, satisfying conditions C1, C2, and C3. Then

c(vij , vkl) + c(vkl, vmn) < c(vij , vmn).

Proof. From the definition of c( , ) and based on C2, we get

c(vij , vkl) = max{k − i, l − j} − 1 = l − j − 1.

Similarly, C3 yields

c(vkl, vmn) = max{m − k, n − l} − 1 = n − l − 1.

By adding up C1 and C2 we obtain m − i ≤ n − j. Thus,

c(vij , vmn) = max{m − i, n − j} − 1 = n − j − 1.

Finally, adding up the expressions for c(vij , vkl), c(vkl, vmn), and c(vij , vmn) yields

l − j − 1 + n − l − 1 < n − j − 1 ≡ − 1 < 0.

Based on the above theorem we state the following corollary, which captures our
first optimization regarding the single-step path expansions.

Corollary 3.3. Let π be a path in GM ending at vertex vij and with EN(π) ≤
K. Further assume that vkl and vmn are two vertices in the target square for π at
vij, satisfying conditions C1, C2, and C3. Then extending path π to vertex vkl

and then to vmn is cheaper than directly extending π to vmn.

The above corollary implies that, if we build an edge from vij directly to vmn, we
“ignore” vertex vkl and unnecessarily increase EN(π). Rather, we better expand
path π to vkl and later on, in the next round, continue to vmn.

We obtain analogous results for the symmetrical conditions when the vertices vkl

and vmn are in the lower part of the target square.

Let us take a more careful look at Corollary 3.3. Practically, it says that, if we
find a vertex vkl, which lies on an upper diagonal of the target square, then we can
exclude from the search for expansion all the triangular area of the target square,
which is bounded by

(1) row k (exclusive), and

(2) the upper diagonal passing through vkl (inclusive).

Symmetrically, if vertex vkl lies on some lower diagonal, then we can exclude
from the search for expansion all the triangular area of the target square, which is
bounded by
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Fig. 6. Search space reduction: None of the shadowed cells of the target square for v01 is tested

after v13 is encountered.

(1) column l (exclusive), and

(2) the lower diagonal passing through vkl (inclusive).

If vertex vkl lies on the main diagonal of the target square, then both triangular
areas are excluded at once.

We strengthen the search-space reduction for path expansions even further. Con-
sider two vertices vkl and vkm in the same row of the target square for a path π at
vertex vij , such that

(1) l − j ≥ k − i, i.e. vkl lies on an upper diagonal, and

(2) m > l, i.e. vkl is closer than vkm to the main diagonal (see Figure 5 [right]).

Let vxy be any vertex inside the target square for some path π′, an extension of
π that is ending at vertex vkm.

Theorem 3.4. Let vertices vij, vkl, vkm, and vxy be as above. The error number
of the two-edge path from vij to vxy, which passes through vkm, is equal to the error
number of the two-edge path from vij to vxy, which passes through vkl, i.e.

c(vij , vkl) + c(vkl, vxy) = c(vij , vkm) + c(vkm, vxy).

Hence, it is sufficient to collect only the path closer to the main diagonal.

Proof. c(vij , vkl) + c(vkl, vxy) = (l − j − 1) + (y − l − 1) = y − j − 2, and
c(vij , vkm) + c(vkm, vxy) = (m − j − 1) + (y − m − 1) = y − j − 2.

Observe the following implication based on Theorem 3.4. If a vertex vkl is de-
tected on an upper diagonal while scanning the target square for vertex vij , then
the cells on the right of vkl in row k can be safely excluded from further search for
expansions.

Symmetrically, if a vertex vkl is detected on a lower diagonal while scanning
the target square for vertex vij , then the cells below vkl in column l can be safely
excluded from further search for expansions.

Based on Corollary 3.3 and the above discussions about Theorem 3.4 (and its
symmetrical case), we present the following optimization.
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Optimization 3.5. In search for expansions, we scan the cells of the target square
in a diagonal-major order, that is: First scan the main diagonal, possibly excluding
parts of the target square from further scan. Next, scan the remaining of the target
square through the 1-upper diagonal and the 1-lower diagonal, possibly excluding
other areas of the target square. Then, continue with the 2-upper diagonal and the
2-lower diagonal and so on.

Observe that the scanning of a target square in this order guarantees that the
exclusion of triangular areas takes place as early as possible. Figure 6 illustrates
this search space reduction.

We state two important corollaries that follow from the above discussion.

Corollary 3.6. Single path extension from an arbitrary vertex vij in GM is
performed at most once for each of the 2K + 1 diagonals surrounding vij, and
therefore the number of possible extensions for vij is bounded by 2K + 1.

Corollary 3.7. An arbitrary cell of a matrix M[i, j] is accessed from at most
one node of each of the 2K + 1 surrounding diagonals. This also implies that an
arbitrary vertex vij serves as a single path extension starting from at most 2K + 1
vertices.

3.3 Interdependence of Paths in the Graph

We show next how the information from previously explored paths can be reused.
Consider the situation that, while scanning the matching matrix, two encountered
(sub)paths start at different vertices and end at the same vertex.

Let π1 be the previously explored path, which connects vertex vij with vmn.
Now, let π2 be another path that we are currently exploring, which originates in
vkl, and is built up to vertex vmn.

The question is whether we should further expand π2, or safely abort it without
loosing any solution. We distinguish three possible cases for π1 and π2 with respect
to their match length and error number and decide whether to expand or abort π2.

Case 1.. EN(π2) < EN(π1).
We expand π2, since π2 offers a further or better solution than the one discovered

by π1.

Case 2.. EN(π2) ≥ EN(π1) and ML(π2) ≤ ML(π1)
In this case all possible expansions of π2 from vmn are subsets of already tested

expansions of π1. The part π2 up to vmn has shorter match length that π1, and
therefore no new information can be obtained by expanding π2. Path π2 can be
aborted.

Note that in this way we may ignore some maximal path, but such a path would
only correspond to a non-maximal solution for Problem 1.

To illustrate consider Figure 7. The path from v00 to v67 serves as π1 (EN(π1) =
3), which is explored earlier in a row-major order. On the other hand the path
from v22 to v67 serves to exemplify π2 (EN(π2) = 3). Clearly, path π2 will only
offer a sub-solution to the solution corresponding to π1, since the substring s[2, 6]
is a substring of s[0, 6], and t[2, 7] is a substring of t[0, 7].
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Fig. 7. Interdependence of paths in the graph. The path from v00 to v67 has EN = 3, and the

path from v22 to v67 also has EN = 3. We abort the second path.

Case 3.. EN(π2) ≥ EN(π1) and ML(π2) > ML(π1)

In this case π2 follows the trails of some already tested expansions of π1, but by
extending π2 we can obtain a longer path, and possibly contribute a new solution.

Case 3 is the only case where both a path expansion or a path abortion may be
the right decision.

We want to ensure that we abort π2 only if it cannot offer a new solution. We
achieve this as follows.

Each path has its starting vertex. All the starting vertices of paths ending at
vmn must lie on one of the 2K + 1 diagonals surrounding the diagonal of vmn.
Otherwise, a path ending at vmn will have more than K errors.

Now suppose that paths π1 and π2 start on the same diagonal and end at the
same vertex vmn. Also, suppose that the starting vertex of π2 is lower than the
starting vertex of π1. It is easy to see that π2 corresponds to a pair of substrings,
which are suffices of the substrings corresponding to π1.

Now, due to the row-wise order of processing, π2 will always be processed after
π1. Clearly, we want to expand π2 beyond vmn only if it has an error number which
is less than the error number of π1. Otherwise, we can safely abort π2.

Since all the paths passing through vmn can only start in the 2K + 1 diagonals
surrounding vmn, we store for vmn an array of 2K + 1 best-error values. Then, we
expand a path beyond vmn only if this path has an error number which is smaller
than the best-error value stored for the diagonal of its starting vertex.

Summarizing, we present the following optimization.

Optimization 3.8. For each vertex vmn we remember the best error numbers
(one per diagonal) of all paths that started at the 2K + 1 diagonals surrounding
vmn and reached this vertex.
Each expansion from vmn starts by checking whether the path constructed so far has
an error number greater or equal to the value stored for the diagonal corresponding
to the starting vertex of the path. If so, the current path is aborted.

The pseudocode of our algorithm is given in Figure 8.
A last note is about storing the information regarding the “so far” best error
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All paths below threshold(M,K,S)

initialize array BestErrors
scan M in row major order
if M[i, j] = 1 then

create path π consisting of single-vertex vij

EN(π): = 0
ML(π): = 1
Expand path(π)

Expand path (π)
if Is Safe To Abort(π) then

return

Let vij be the start vertex of π

Let vmn be the end vertex of π

κ:= K - EN(π)
scan target square κ × κ in diagonal-major order

(starting from the main diagonal)

if a vertex vxy is encountered then
expand π into π′

EN(π′): = EN(π)+max(x − m − 1, y − n − 1)
ML(π′): =min(x − i + 1, y − j + 1)
Expand path(π′)

if ML(π) ≥ S then
add π to the set of solutions

Is Safe To Abort(π)
Let vij be the start vertex of π

Let vmn be the end vertex of π

diagonalID := K + (m − i) − (n − j)
/*diagonalID is an identifier of the diagonal passing through vij .
Such ids are calculated relative to end point vmn. */

if BestErrors[vmn] = null then
BestErrors[vmn] := new array [2K + 1]
BestErrors[vmn][diagonalID] := EN(π)

return false

if BestErrors[vmn][diagonalID] = null or
BestErrors[vmn][diagonalID] > EN(π) then

BestErrors[vmn][diagonalID] := EN(π)
return false

return true

Fig. 8. Pseudocode of the APBT algorithm
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number of paths ending at the examined vertices. As we are looking for local
similarities, we solved this problem by setting an (artificial) upper bound Smax > S
for the matches. In such a way, we can use N · (2K + 1) · Smax bounded memory3

in the form of a rotating two-dimensional N × Smax array A (of objects holding
up to 2K + 1 values). Namely, a row of A corresponds to a row of M. Initially,
rows 0 to Smax of A correspond to rows 0 to Smax of M, i.e. the best path error
numbers for vertices vi , where i < Smax, are stored in row i of A. When we finish
processing row 0 of M, then we recycle row 0 of the array to store the best path
errors for the vertices of row Smax, and so on. In general, when we ask for some
best path error for a vertex vij we consult the row i mod Smax of A.

We stop expanding the solution if the length exceeds Smax. In practice, we choose
Smax = 500 which seems high enough, since the matches never exceeded it in our
experiments. We stress that setting an artificial upper bound Smax is not really a
limitation of our algorithm. If there exist oversize matches, then they can be easily
obtained as a post processing step in linear time with respect to the size of output.

From the above, we can formulate the following lemma.

Lemma 3.9. Each vertex vmn in the graph is expanded at most (2K +1) ·(K +1)
times.

Proof. K +1 is the maximum number of different possible error numbers. Each
such error number can occur for each of the 2K+1 diagonals that surround vmn.

Theorem 3.10. Algorithm All Paths Below Threshold has a time complexity of
O(MNK3).

Proof. During path extension, any cell of the matrix is directly accessed only
from at most 2K +1 vertices (cf. Corollary 3.7). But each of those 2K +1 vertices
gets expanded not more than (2K + 1)(K + 1) times (cf. Lemma 3.9). Therefore,
the upper bound of accessing an arbitrary cell of the matrix is (2K + 1)(2K +
1)(K +1). Since there are at most MN many cells in M, the total time complexity
is O(MNK3).

4. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of our APBT algorithm,
as well as a comparison with the previous algorithm for this problem, namely the
well-known algorithm by Baeza-Yates and Gonnet [Baeza-Yates and Gonnet 1999].

All experiments were performed on the same 3 GHz Pentium 4 PC with 2 GB of
RAM. We implemented both algorithms in Java 1.5.

4.1 Random Sequences

First, we discuss the average running time of our algorithm with respect to the
number of allowed differences K and lengths M and N of the input sequences.
For this, we generated random strings with uniform character distribution over two
alphabets of sizes 4 and 20. Every point in the following figures corresponds to an

3This is less than the memory required by Baeza-Yates and Gonnet’s algorithm to store the

dynamic programming tables.
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Fig. 9. Dependence of APBT on K for pairs of randomly generated sequences of length 2000.

The minimum pattern length is S = 30.
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Fig. 10. Dependence of APBT on the length of sequences (random strings, S = 30, K = 5)
[Left] |Σ| = 4. [Right] |Σ| = 20.

average value obtained by running the algorithm on 10 different pairs of sequences
of the same length and character distribution.

In Figure 9, we observe that although the worst case bound of APBT is cubic
in K, on average, APBT depends only quadratically on K. Also, we observe that
for alphabets of larger size, such as 20, APBT performs much better than for
alphabets of smaller size, such as 4. This is explained by the fact that with the
increase of the alphabet size, the matching matrix used in APBT becomes more
sparse.

In Figure 10, we show the dependence of APBT on the length of sequences.
For this experiment, we considered pairs whose first and second sequences were of
equal lengths, i.e. N = M . It is evident from the presented results that APBT is
quadratic with respect to length N of input sequences.
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4.2 Biological Sequences

Next, we evaluate the APBT algorithm on biological sequences. In these experi-
ments, we investigate the dependence of the running time on the alphabet size of
biosequences, as well as on the similarity of biosequences as measured by the output
size produced by APBT .

For evaluating the dependence on the alphabet size, we considered DNA and
protein sequences, which have alphabets of size 4 and 20 respectively. We are
aware that, for proteins, the unit-cost edit distance assumed in APBT , might often
not be used in practice. Neverthless, it is still interesting to find out if protein
sequences contain approximate matches with up to 20 percent differences (i.e. 80
percent identical characters).

The considered pairs of DNA sequences were (D1, D2), (D1, D3), (D4, D5) and
(D4, D6) where D1, D2, D3, D4, D5 and D6 were the following genomic sequences:

D1. Human coronavirus 229E (27,317 bp)

D2. Human coronavirus OC43 (30,738 bp)

D3. Avian infectious bronchitis virus strain Cal99 (27,693 bp)

D4. Mycobacteriophage D29 (49,136 bp)

D5. Mycobacteriophage Bxb1 (50,550 bp)

D6. Mycobacteriophage D29 (49,136 bp)

The considered pairs of protein sequences were (P1, P2) and (P1, P3) where P1,
P2, and P3 were the following protein sequences:

P1. Titin isoform N2-A [Homo sapiens] (33423 aa)

P2. Titin [Mus musculus] (26886 aa)

P3. Titin A [Danio rerio] (32757 aa)

Sequences D1 and D2 are more biologically related. The same is true for D4 and
D5, as well as for P1 and P2. A natural question is whether our APBT algorithm
depends on the amount of similarity of compared sequences as measured by the size
of output. Interestingly, the observed running times do not show any significant
dependence on the similarity of the compared sequences.

In Table 1, we show the running times of APBT as well as the size of output
for pairs (D1, D2), (D1, D3), and (D4, D5), (D4, D6) [top] and (P1, P2), (P1,
P3) [bottom]. We observe that the running times for (D4, D5) and (D4, D6)
are almost identical despite the fact that the output sizes differ significantly. We
observe a similar phenomenon for pairs (D1, D2), (D1, D3) and (P1, P2), (P1,
P3). The small differences in the running times for (D1, D2) versus (D1, D3) and
(P1, P2) versus (P1, P3) are directly attributed to the differences in length between
sequences D2 and D3, and between sequences P2 and P3. For example, for K = 10,
the running times for (D1, D2) and (D1, D3) are 84 and 74 minutes respectively.
On the other hand, the length of D2 is 30,738 bp, while the length of D3 is 27,693
bp (D1 is common for both pairs). We can observe that 84/74 ≈ 30, 738/27, 693.
Thus, we conclude that the running time of APBT does not (noticeably) depend
on the amount of similarities as measured by the size of the produced output.

In Figure 11, we show running times of the APBT algorithm for pairs (D1, D2)
and (P1, P2). The sequences of these pairs are of approximately 30,000 characters.
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K D1-D2 (T) D1-D2 (O) D1-D3 (T) D1-D3 (O) D4-D5 (T) D4-D5 (O) D4-D6 (T) D4-D6 (O)

1 1 0 1 0 4 7 4 0

2 3 0 3 0 9 40 9 0

3 5 0 5 0 16 160 17 0

4 9 0 8 0 28 400 28 0

5 15 0 13 0 45 927 45 0

6 22 7 19 1 68 2225 69 0

7 32 41 28 9 100 4837 100 0

8 45 146 40 34 141 9478 143 0

9 63 385 55 143 195 17309 196 0

10 84 922 74 439 262 29671 264 0

K P1-P2 (T) P1-P2 (O) P1-P3 (T) P1-P3 (O)

1 0.3 13427 0.4 5

2 0.5 40143 0.5 25

3 0.7 87518 0.8 58

4 1.0 163197 1.2 154

5 1.4 272467 1.7 421

6 1.9 415222 2.2 965

7 2.5 599626 2.9 1783

8 3.2 822541 3.8 3275

9 4.1 1090377 4.8 5947

10 5.4 1403277 6.0 10263

Table I. Running times and output sizes for biological sequences. T is for time (mins) and O is
for output size. Parameter S is 50.
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Fig. 11. Dependence of APBT on K for pairs D1-D2 and P1-P2 of lengths approximately 30,000.

Parameter S is 50.

The results in this figure confirm that for larger alphabets APBT performs much
faster. Also, we confirm once more that the dependence on K is in fact quadratic
as opposed to cubic.

4.3 Comparative Performance

Finally, we compare the APBT algorithm with the algorithm by Baeza-Yates and
Gonnet [Baeza-Yates and Gonnet 1999], which solves exactly the same problem.
In fact, we implemented Gusfield’s [Gusfield 1997] variant of the Baeza-Yates and
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Gonnet algorithm.4 Also, we optimized it by an order of magnitude using Ukkonen’s
[Ukkonen 1985] error-bounded dynamic programming method.

Briefly described, Gusfield’s variant of Baeza-Yates and Gonnet’s algorithm is
as follows. First, suffix trees are built for strings s and t. Then, these suffix trees
are traversed, and for each pair of nodes (with one node from each tree), the edit
distance between the substrings labeling the nodes is computed using dynamic
programming (DP). The last row and column of the DP tables are used to initialize
the (next) DP tables for the substrings of the child nodes.

In an error-bounded variant, if all the values in the last column and last row
of the dynamic programming table for the parent nodes exceed K, then we can
safely abort traversing and testing the child nodes. This is true because of the non-
decreasing nature of the values in the dynamic programming table. Early stopping
this way tremendously improves the average running time of the algorithm for small
K.

Regarding the worst case, the use of suffix trees still involves the comparison
of (at most) MN different pairs of suffices by calculating values of MN dynamic
programming tables of size (at most) O(MN), having so an O(M2N2) algorithm
(in the worst case).

As mentioned above, since we are interested in an error-bounded version of the
problem, we enhanced the original algorithm by using Ukkonen’s linear time calcu-
lation of the error-bounded edit distance (see [Ukkonen 1985]). In our implemen-
tation of the algorithm by Baeza-Yates and Gonnet, we compute cells only in the
area of width 2K+1 around the main diagonal of the dynamic programming tables.
This reduces the worst case time to O(M2NK) (i.e. O(MN × M(2K + 1))). We
abbreviate this version of the algorithm as algorithm BY GU .

The major problem we faced in the implementation of the BY GU algorithm was
its great space demand. This is because for each pair of nodes (with one node from
each tree), we need to store the values of the last row and column of the DP table
in order to reuse them in the DP calculations for their children. For real DNAs (of
length in the order of 30,000 – 50,000 characters), using any tree traversal strategy,
there is an excessive number of such last rows and columns to be remembered, and
the needed memory exceeds 2GB (which was available to us). This fact may lead to
the conclusion that our new APBT algorithm, to the best of our knowledge, is the
only currently known feasible solution (which runs in a main memory of reasonable
size) for the all-against-all problem on real DNA sequences.

In Figure 12, we present comparative results on random sequences of length 1000
generated with uniform character distribution (i.i.d.) for alphabets of size 4 and
20. The BY GU algorithm, due to its excessive computational demand, was not
suitable to run on sequences of greater length.

In order to compare the performance of APBT with BY GU for biological se-
quences, we show in Figure 13 their running times for substrings of 1000 characters
extracted from biological sequences D1, D2 and P1, P2.

We observe that APBT outperforms BY GU for each K and on each pair of
sequences as shown by both Figures 12 and 13. For a comparison, APBT performs

4The original code of [Baeza-Yates and Gonnet 1999] is unfortunately not available anymore

(personal communications with Baeza-Yates and Gonnet).
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Fig. 12. Comparative performance of APBT and BY GU on pairs of random strings of length

1000. Parameter S is 30.
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Fig. 13. Comparative performance of APBT and BY GU on pairs of strings of length 1000

extracted from D1, D2 and P1, P2. Parameter S is 30.

more than 5 times better than BY GU for alphabet of size 4 and more than 20
times better for alphabet of size 20.

5. RELATED WORK

Besides previous work mentioned in the Introduction, in this section, we discuss
other related works which address variations of the same problem or use similar
techniques.

5.1 Reducing the Search Space – Filtering Algorithms

In [Rasmussen et al. 2005], Rasmussen, Stoye and Myers propose SWIFT which
is an efficient filtering method for identifying candidate parts of the input strings
that can contain an approximate match of length above a given threshold and error
number below some other (interrelated) threshold. Their method is based on the
observation that if an area s[i, j]× t[k, l] of the DP table for the given input strings
contains an approximate match of length S and error number K, then it must also
contain at least (S + 1) − q(K + 1) exact matches of length q (called “q-hits”). In
this way, all the areas in the DP table containing less than (S +1)−q(K +1) q-hits
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Fig. 14. Effectiveness of q-gram based filtering. The percentage of the filtered-out entries in the

DP table is plotted as a function of q.

can be safely excluded from the search for approximate matches. The remaining
areas still need to be searched for approximate matches by using a full sensitivity
algorithm. We remark that Rasmussen, Stoye and Myers in [Rasmussen et al.
2005] do not propose such a full sensitivity algorithm. Clearly, SWIFT can be
used as preprocessing step before applying our algorithm, which is a full sensitivity
algorithm. Thus, SWIFT filtering and our APBT algorithm are complementary of
each other rather than competing methods. We further comment on the usuability
of SWIFT as follows.

SWIFT works well when the value of K is about (or less than) 5 percent of S, e.g.
S = 50 and K = 3. For such parameters, which imply a search for q-hits of length
11, Rasmussen, Stoye and Myers obtained an impressive filtering rate on large DNA
sequences, leaving for a full sensitivity search less than one thousandth of the search
space. Unfortunately, q inversely depends on K, and SWIFT quickly deteriorates
for q < 7, which corresponds to just K = 7 and S as above (i.e. 50). In Figure 14,
we show the SWIFT filtering rate as a function of q. These rates were obtained on
pair (D1,D2). We also experimented with the rest of the pairs considered in the
previous section, and found very similar filtering rates. The natural observation on
Figure 14 is that the effectiveness of q-gram filtering steeply drops for q ≤ 7.

SWIFT is currently the best known q-gram based filtering software which per-
forms better than the previous QUASAR filtering program by Burkhardt et al. in
[Burkhardt et al. 1999].

5.2 Heuristic Search

Among the widely used local similarity search programs are the well-known BLAST
and FASTA. Both are heuristic methods.

We remark that in fact BLAST does not solve the problem of threshold all-
against-all substring matching. The substring patterns produced by BLAST are
chains of exact matches (called hotspots) of length at least 7 (for DNAs). Hotspots
are then chained together without allowing insertions and deletions. A hotspot
is extended by another hotspot if the total score of the corresponding space-free
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alignment is greater than the scores for each hotspot before chaining. The chains
with a score above some similarity threshold are reported as a solution. Unfortu-
nately, BLAST cannot guarantee that the reported regions of compared sequences
are in fact more similar than other non-reported regions. Also, BLAST misses all
the approximate substring matches which contain insertions and deletions as well
as all approximate matches which do not contain exact matches of length less than
the predefined threshold (more or equal to 7 for DNAs).

FASTA exhibits similar issues as BLAST. The first step of FASTA is to find 10
diagonal regions in the DP table having the highest density of exact matches for a
predefined length. Then, these regions are further tested. FASTA’s first step does
not consider insertions and deletions and is based on the density of exact matches.
As for BLAST, there is no guarantee that the reported patterns of compared se-
quences are in fact more similar than other non-reported patterns.

The above is summarized by Gusfield in [Gusfield 1997], p. 377 as follows: “they
[BLAST and FASTA] do not permit precise analysis of their speed and accuracy.”
Despite the fast performance of BLAST and FASTA, our full sensitivity APBT
algorithm cannot be evaluated against them.

5.3 Similar Techniques

Here we highlight some graph models used in the literature for string searching
algorithms, which show some similarity to our graph model.

Kececioglu in [Kececioglu 1993] defines an alignment graph. We remark that his
so-called super-vertices correspond to the vertices of our graph GM. The alignment
graph is used for defining multiple sequence traces, which when restricted to two
sequences coincide with traces as defined by Sankoff [Sankoff and Kruskal 1983].
These traces were also used by Reinert et al. [Reinert et al. 1997] to devise a
Branch-and-Cut Algorithm for the Multiple Sequence Alignment problem.

However, our GM graph cannot be used to depict a trace. Although the ver-
tices of GM correspond to super-vertices of the alignment graph, the definition of
the edges in GM is different from the one for edges between super-vertices of the
alignment graph. Namely, an edge is defined from one super-vertex X to another
super-vertex Y iff there exists an element (character) x ∈ X which immediately
precedes (in one of the strings) some element (character) y ∈ Y . For the case of
two strings, say s and t, suppose that (i, j) and (k, l) are two super-vertices, i.e.
s[i] = t[j] and s[k] = t[l]. Furthemore, suppose that k = i + 1 and j = l. Then,
there is an edge between super-vertices (i, j) and (k, l). However, there is no edge
between (i, j) and (k, l) in our GM graph because in GM, horizontal edges are not
allowed. Similar reasoning holds for the case of vertical edges as well, which are
also not allowed in GM. The only edges in common are the diagonal edges between
(i, j) and (i + 1, j + 1) in case s[i] = t[j] and s[i + 1] = t[j + 1]. On the other hand,
in our GM graph, we have edges between non-adjacent matches as well.

The chaining techniques used in [Abouelhoda and Ohlebusch 2005; Höhl et al.
2002] to compute the heaviest chain are based on a graph model whose edges, in
general, are a subset of the edges in GM. To prune, the authors exploit geometrical
properties of their graph model, as well as a priority-queue based pruning-technique.

We do not see, however, how to solve our problem efficiently using the techniques
described in [Abouelhoda and Ohlebusch 2005; Höhl et al. 2002]. Note that both
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techniques solve variants of the global alignment problem. In general, any tech-
nique computing global alignments, certainly can be used to solve Problem 1 by
computing such an alignment starting from each pair of positions, for a total cost
of O(N · M · cost of the technique).

The chaining techniques in [Abouelhoda and Ohlebusch 2005] are also used to
solve a variant of the local alignment problem. However, computing local align-
ments does not provide a solution to Problem 1, as already discussed in other
works (cf., [Arslan et al. 2001]).

6. CONCLUSIONS

In this paper, we focused on the problem of error-bounded all-against-all approxi-
mate substring matching for two strings. The main contribution of our work is a new
algorithm, which presents a much more feasible solution to this difficult problem.
The worst-case running time of our algorithm is O(MNK3), which is a significant
improvement over the well-known algorithm for this problem by Baeza-Yates and
Gonnet.

We conclude with the remark that our algorithm can be easily parallelized. This
can be achieved by processing different subsets of starting points in the matching
matrix, independently and in parallel, in different machines. This should make our
algorithm practical for even very long input strings.
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