
Suffix Trees for Inputs Larger than Main Memory

Marina Barsky, Ulrike Stege and Alex Thomo

University of Victoria
BC, V8W 3P6, Canada

Abstract. A suffix tree is a fundamental data structure for string searching algorithms. Un-
fortunately, when it comes to the use of suffix trees in real-life applications, the current methods
for constructing suffix trees do not scale for large inputs. As suffix trees are larger than the
input sequences and quickly outgrow the main memory, the first attempts at building large
suffix trees focused on algorithms which avoid massive random access to the trees being built.
However, all the existing practical algorithms perform random access to the input string, thus
requiring in essence that the input be small enough to be kept in main memory. The constantly
growing pool of string data, especially biological sequences, requires us to build suffix trees for
much larger strings.
We are the first to present an algorithm which is able to construct suffix trees for input
sequences significantly larger than the size of the available main memory. Both the input
string and the suffix tree are kept on disk and the algorithm is designed to avoid multiple
random I/Os to both of them1. As a proof of concept, we show that our method allows to
build the suffix tree for 12GB of real DNA sequences in 26 hours on a single machine with
2GB of RAM. This input is four times the size of the Human Genome, and the construction
of suffix trees for inputs of such magnitude was never reported before.

1 Introduction

Nowadays, textual databases are among the most rapidly growing collections of data. One
of these collections, the collections of sequenced genomes, is a textual database where the
genomes of different organisms are represented as strings of characters over the 4-letter
alphabet {a, c, g, t} of DNA bases. The size of each sequence is measured in base pairs (bp),
where each base pair occupies 1 byte of storage. As of February 2008, the total size of the
publicly available GenBank sequence databases has reached 85Gbp, and the size of data
in the Whole Genome Shotgun (WGS) sequencing project stands at about 109Gbp [27].
Notably, the size of GenBank is doubling approximately every 18 months [2].

It has become clear that if we want to use the information from genetic databases to its
full potential, we need to design more efficient techniques to support user-defined queries
for this data. One of the promising directions is the preprocessing of entire collections of
genomic data into indexing structures which facilitate efficient query evaluation. Since the
nature of DNA strings does not allow the use of word indexes, we need to look at full-text
indexes, i.e. indexes for all the different substrings of a given set of strings. Examples of
such indexes are: suffix trees [17], suffix arrays [16], and string B-trees [7]. In this paper we
consider suffix trees which are crucial for many applications on genome data (cf. [9]).

Once the suffix tree is built, we can solve many combinatorial problems on strings in
optimal time. Finding all the substrings common for a set of strings in time linear in the
length of the input is one example of such a problem [9]. Counting the total number of

1 The preliminary version of this paper was presented as a short paper at CIKM 2009 conference

different substrings, also in linear time, is another example [22]. Further, suffix trees can
be used to efficiently find all the locations of a pattern in a set of strings, to accelerate ap-
proximate pattern matching [25, 18], to compute matching statistics, to locate all repetitive
substrings, or to extract palindromes [9].

As suffix trees are significantly larger than their input sequences and quickly outgrow the
main memory, until recently, the theoretically attractive properties of suffix trees have not
been fully exploited since the classical construction algorithms were only able to produce
trees that fit in main memory.

Clearly, constructing suffix trees for larger inputs calls for disk-based methods. Thus far,
two major bottlenecks have prevented an efficient construction of suffix trees in secondary
storage: random traversals of the tree during its construction and massive random accesses
to the input string.

Recently, research has been done toward overcoming the first bottleneck by reducing
the number of random accesses to the tree on disk during its construction. This approach
resulted in a number of efficient practical algorithms [1, 19, 23], each of which can build the
suffix tree on disk for a set of eucaryotic genomes in a matter of hours (the size of the input
is in the order of a few Gbp).

However, the scalability of all these proposed methods does not go beyond inputs that fit
into main memory. As was mentioned in [24], the suffix-tree construction for the case when
the input string is on disk can take weeks and even months due to a prohibitive number of
random disk I/Os.

We note that indexing strings that do not fit in main memory, from a utility point of
view, is much more important than indexing strings that do. This is because for strings
fitting into main memory, the on-line in-memory search methods might be more efficient
than methods based on disk-based indexes.

There are theoretical results for the external memory suffix tree construction. The suffix
tree algorithm by Farach et al. [6] is theoretically optimal for the external memory compu-
tational model. The time complexity of this algorithm is equal to the complexity of sorting.
Nevertheless, as discussed for example in [22], the overall intricacy of the Farach algorithm
has prevented, so far, its practical implementation.

On the other hand, the currently implemented algorithms for the suffix tree construction
do not scale for input strings which do not fit in main memory. Thus, how to design an
efficient practical algorithm to build suffix trees for such strings remains an open problem.
The challenge can be formulated as follows: can multiple random accesses to the input string
be avoided during the suffix tree construction?

The main contribution of this paper is the first practical algorithm for constructing
suffix trees for inputs larger than the size of the main memory. Specifically, we make the
following contributions:

1. We present B2ST , an efficient external-memory suffix tree construction algorithm for
very large inputs.2 The algorithm is based on partitioning the input, sorting the suffixes
in each partition pair, and efficiently merging the sorted suffixes into a suffix tree. Our
B2ST algorithm minimizes random access to the input string, and accesses the disk-
based data structures sequentially.

2 B2ST stands for Big string, Big Suffix Tree

2

2. We show that B2ST scales to much larger inputs than the previous algorithms. Our
algorithm is able to build a disk-based suffix tree for virtually unlimited size of input
strings, thus filling the ever growing gap between the increase of main memory in modern
computers and the much faster increase in the size of genomic databases. For example,
using our implementation of B2ST we build the suffix tree for a DNA sequence of total
size of about 12GB in 26 hours on a single machine using only 2GB of main memory.

3. We show that B2ST is several times more efficient than the previously proposed algo-
rithms TDD [24] and Trellis+SB [20] designed for input strings larger than the main
memory. This is because B2ST performs sequential access to both the input string and
tree being built, whereas the other algorithms cannot avoid a large enough number of
random accesses to the input string.

The remainder of this paper is organized as follows: the research related to the problem
of building suffix trees for inputs in excess of RAM is discussed in Section 2, the detailed de-
scription of the new algorithm is given in Section 3, and in Section 4 we give an experimental
evaluation of the proposed algorithm.

2 Related work

The performance of the best practical algorithms for disk-based suffix tree construction
degrades rapidly when the input string does not fit the main memory [1, 19, 23]. All these
algorithms are designed to rely on random access to the input string and on minimizing
the random access to the partially built tree on disk. Each of these methods was extended
to handle the case of extra large inputs. The results of these efforts are summarized below,
clearly indicating that the problem is far from being solved.

2.1 ST-merge and the locality of references

In [24], the Top Down Disk based suffix tree construction algorithm TDD was extended for
the case when the input string does not fit the main memory. The authors proposed the
Suffix Tree Merge (ST-Merge) algorithm, which works as follows. The input of size N is
partitioned into K partitions, such that N/K is smaller than the size of the main memory.
A suffix tree for each partition is built using the TDD algorithm. After this, suffix trees
from different partitions are merged into a single tree. In the merge step, the suffix-tree
edges from the different partitions are grouped by their first character. Next, their longest
common prefix (LCP) is calculated by scanning the corresponding parts of the input. The
result of this calculation produces a new internal node in the growing suffix tree. Then the
process continues for the sub-groups of suffixes which differ in the character next to LCP.
The merge performed by ST-merge involves multiple random accesses to the input string.

This algorithm was expected to have better locality of references in the access to the
input string than the original TDD algorithm. However, the experimental evaluation re-
ported in [24] has shown that the ST-merge algorithm runs an infeasible amount of time
for moderate input sizes. For example, the construction of the suffix tree for an input of
size 20MB using 6MB of main memory (allocated for the input string buffer) took about
8 hours. The performance for larger inputs was not reported. Since the improvement over

3

the original TDD algorithm was insignificant,3 in our comparative experiments we use TDD
instead of ST-merge.

2.2 Trellis with string buffer

Interesting original ideas to overcome the input string bottleneck were proposed by the
authors of the Trellis algorithm in [20] where they developed a new version of the algorithm
– Trellis with String Buffer (Trellis+SB). Similar to ST-merge, the Trellis algorithm is
based on a partition and merge strategy. It first builds suffix trees for partitions of the
input string. Then it breaks the suffix tree of each partition into sub-trees according to
the precomputed set of prefixes. Next, the sub-trees from different partitions which share
the same prefix are merged together. The total size of sub-trees for each common prefix
allows all such sub-trees to be merged in main memory. In the merge phase, however, the
edges are compared character-by-character, incurring massive random accesses to the entire
input string. This requires the entire input string to reside in main memory, otherwise the
performance severely degrades.

To improve this behavior during the merge, in Trellis+SB some parts of the input string
are kept in the main memory. The rest is read from disk when required. Since suffix-tree
edges contain positions of the corresponding substring inside the input string, Trellis+SB
replaces these positions, whenever possible, by positions in one small representative parti-
tion. This small representative part of the input is kept in memory during each merge and
increases the buffer hit rate. Another technique used by Trellis+SB is the buffering of some
initial characters for each leaf node.

The combination of these techniques allowed in practice to reduce the number of accesses
to the on-disk input string by 95%. Note that the remaining 5%, for example, for an input
of 10GB correspond to 500 million of random disk I/Os. The authors report that they were
able to build the suffix tree for 3GB of the Human genome, using 512MB of main memory,
in 11 hours on an Apple Power Mac G5 with a 2.7GHz processor and 4GB of total RAM.
The performance for larger inputs was not reported.

2.3 DiGeST and prefix buffering

Similar results were obtained for the DiGeST algorithm [1], which merges suffix arrays built
for input partitions, using a multi-way merge sort and organizing the output buffer in form
of a suffix tree. In order to reduce the access to the input string in the merge phase, for
each position in the suffix arrays of partitions a 32–character prefix was attached. This
prefix served the comparison of suffixes of different partitions in the merge phase of the
algorithm. The references to the input string were reduced by 98% for the DNA data used
in the experiments in [1]. Even 2% of remaining random accesses significantly degraded the
perfomance of DiGeST when the input string was kept on disk.

From the evaluation of all these methods, it follows that the suffix tree construction
algorithms for inputs in secondary storage remain impractical and call for a better solution.

3 The implementation of ST-Merge is not available [20].

4

3 Our Algorithm

3.1 Problem definition

We consider a string X = x0x1 . . . xN−2$ to be a sequence of N symbols. The first N − 1
symbols are over a finite alphabet Σ, xi ∈ Σ (0 ≤ i < N − 1). The last symbol xN−1 is
unique and not in Σ (a so-called sentinel).

By Si = X[i,N] we denote a suffix of X beginning at position i, 0 ≤ i < N . Thus S0 = X
and SN−1 = $. Note that we can uniquely identify each suffix by its starting position.

Prefix Pi is a substring [0, i] of X. The longest common prefix LCPij of two suffixes Si and
Sj is a substring X[i, i+k] such that X[i, i+k] = X[j, j+k], and X[i, i+k+1] �= X[j, j+k+1].
For example, if X = ababc, the LCP0,2 = ab, and |LCP0,2| = 2.

If we sort all the suffixes in lexicographical order, and record this order into an array
of integers, then we obtain the suffix array SA of X. SA holds all integers i in the range
[0, N], where i represents Si. In more practical terms, the array SA stores integers sorted
according to the lexicographical order of the suffixes these numbers represent. For example,
for X = ababc, SA = [0, 2, 1, 3, 4], since S0 = ababc is lexicographically smaller than S2 =
abc etc. The suffix array can be augmented with the information about the longest common
prefixes for each pair of suffixes represented as consecutive numbers in SA.

A suffix tree [17] is a digital tree of symbols for the suffixes of X, where edges are labeled
with the start and end positions in X of the substrings they represent. Note also that each
internal node in the suffix tree represents an end of the longest common prefix for some pair
of suffixes. Figure 1 shows what the suffix tree for X looks like. The leaves are labeled with
the start position in X of corresponding suffixes, and each suffix can be found in the tree
by concatenating substrings associated with edge labels. These substrings are not stored
explicitly, but each substring is represented as an ordered pair of integers indexing its start
and end position in X. The total number of nodes in the suffix tree is constrained due to
two facts: there are exactly N leaves, and the degree of any external node is at least 2.
There are therefore at most N − 1 internal nodes in the tree. Hence, the maximum number
of nodes (and edges) is linear in N . The tree’s total space is linear in N in the case that each
edge label can be stored in a constant space. Fortunately, this is the case for an implicit
representation of substrings by their positions.

R

0

ab

abc

1

b

abc

4

c

3

c

2

c

0-1

2-4 4-4 2-4 4-4

4-41-1

cbaba
43210
cbaba
43210

Fig. 1. Suffix tree for X = ababc. For clarity, the explicit edge labels are shown, which are represented as
ordered pairs of positions in the actual suffix tree. Each suffix Si can be found by concatenating substrings
of X on the path from the root to the leaf node Li.

5

In this article, we discuss the problem of constructing suffix tree ST for string X of size
N . Our challenge is that the size M of the main memory is smaller than the space needed
to hold the entire input string; the input-to-memory ratio r = N/M is at least 2. Therefore,
neither X nor ST can be entirely loaded into the main memory and only some parts of
them can be held in main memory buffers. The goal is to build ST minimizing random disk
I/Os.

3.2 Our solution

Our solution for the problem described above is based on the following ideas.
The suffix tree of X can be constructed given its suffix array SA augmented with an LCP

information. As was proved in [6], the conversion of the suffix array into the suffix tree can be
performed in a linear time. In practice, this process exhibits a good locality of references and
therefore a good behavior in external memory settings. When we incrementally insert sorted
suffixes into the growing suffix tree, we perform the sequential reading of the suffix array
and the sequential writing of the suffix trees for consecutive lexicographic intervals, without
performing random disk I/Os to both these data structures. This shows that both SA and
ST can be kept on disk, and only their sequential parts can be loaded and manipulated in
main memory.

Consequently, the first step in our algorithm for the suffix tree construction is obtaining
a suffix array for string X, augmented with the LCP information. For this, we want to
lexicographically sort all suffixes of X. Suffix sorting differs from conventional string sorting
in that the elements to be sorted are N overlapping strings, and the length of each such
string is O(N). This implies that a comparison-based sorting algorithm, which requires
O(N log N) comparisons, may take O(N2 log N) time. Moreover, if we treat suffixes as if
they were regular strings we have an even bigger problem: when comparing a pair of suffixes
we need to scan the corresponding sequences of symbols in X starting at two positions along
the string X. These positions are mostly non-consecutive. When X is on disk, this translates
into a prohibitive number of random disk I/Os.

The second idea we use in the design of a new algorithm is the general paradigm of
the external memory two-phase multi-way merge-sort (2PMMS) [8]. We partition X into
slightly overlapping substrings (partitions) and lexicographically sort the suffixes in each
partition. We can do this in main memory by using any of the best algorithms for in-memory
suffix sorting. Then, we output to disk the suffix arrays for suffixes in different partitions.

A problem arises when we want to merge these suffix arrays. In the simple case of
merging sorted lists of keys, the relative order of elements from any two different lists is
determined by comparing these elements. However, in our case, all we have are the starting
positions of suffixes from different partitions, since this is all the information we can store in
suffix arrays. This does not help in determining the relative lexicographical order of suffixes,
since our sorting keys are the substrings of X (and not their starting positions).

A näıve approach would compare two suffixes from different partitions by randomly
accessing X, which is on disk. This would lead to O(N) random disk I/Os. This takes a
prohibitive amount of time even for small N . Be reminded that the size N of our input
string is several times larger than the available main memory.

We now present our Big tree, Big string Suffix Tree construction algorithm (B2ST)
which minimizes the number of random accesses to the input string during the merge phase.

6

Note, that we never load an entire input string into main memory. In the merge step we do
not compare the actual input string characters, but rather deduce the necessary information
from the relative order and the LCP of any two suffixes stored in specific structures which
we call pairwise order arrays.

This new technique presents a practical method for building suffix trees from the input
strings of size several times larger than the main memory.

Algorithm B2ST proceeds in three steps: input partitioning, sorting of suffixes for each
pair of partitions and merging all suffixes into a disk-resident suffix tree.

3.3 Step 1: Input Partitioning

Our algorithm first partitions the input string X of size N into k partitions, such that
k = 2r (recall that r = N/M is the input to memory ratio). Note that the sequenced
genomes are already partitioned into natural partitions - the chromosomes. The size of the
largest sequenced chromosome, Human chromosome I, is just 247Mbp. In general, if one
of the natural partitions is too large, it is partitioned into several artificial partitions, such
that each partition has length at most p. We append to the end of each partition, except
the last one, a small “tail”, namely the prefix of the next partition. The tail of the partition
must never occur as a substring of this partition. It serves as a sentinel for the suffixes
of the partition, and its positions are not included into the suffix array of the partition,
and its positions are not included into the suffix array of the partition. This ensures that
each suffix Si of a partition Xu (0 ≤ i < |Xu|, 0 ≤ u < k) will be sorted as a valid
representative of a suffix Sup+i of X. In practice, for real-life DNA sequences, the length of
such a tail is negligibly small compared to the size of the partition itself (it never exceeded
1000 characters in our experiments with DNA databases).

Consider the example in Figure 2. It shows the partitioning of input string X =
ababaaabbabbbabaabab into four partitions. The main memory can hold up to 16 charac-
ters of the input at a time. To facilitate the example, we represent our input as a binary
string (a stands for 0-bit, b stands for 1-bit). In this illustration we also refer to the partition
numbers as A, B, C, and D in order to distinguish them from the numbers representing
character positions. Note that the tail of partition XB is substring bbb, which never occurs
inside XB = aabba.

54321543215432154321
babaababbbabbaaababa

Partition DPartition CPartition BPartition A

54321543215432154321
babaababbbabbaaababa

Partition DPartition CPartition BPartition A

Fig. 2. Input string X = ababaaabbabbbabaabab and its four partitions. The tail of partition B is substring
bbb, which serves as a sentinel for suffixes of XB = aabba. The combined size of each pair of partitions with
their tails must be less than the size of main memory M .

Note that we require the combined size of any pair of partitions 2p including their tails
to be less than M .

7

Algorithm pairwiseSorting
input: k partitions of string X

1. for (u=0; u<k-1; i++)
2. for (v=1; v<k; v++)
3. concatenate XuXv and load into RAM
4. build suffix array with LCP SAuv
5. during sequential scan of SAuv
6. if v==k-1 //last chunk
7. output to disk SAv
8. output to disk SAu
9. output to disk Ruv //order array

Fig. 3. Algorithm for pairwise sorting of suffixes in all partition pairs.

3.4 Step 2: Suffix sorting in partition pairs

In this step we generate suffix arrays for each pair of partitions. The pseudocode for this
step is shown in Figure 3. We concatenate every possible pair u, v of partitions with their
tails (0 ≤ u < k − 1, u + 1 ≤ v < k, u < v) into string XuXv. We load this input into the
main memory and build the suffix array SAuv with attached LCP length information for
each suffix. The suffixes which start in tail positions are excluded from the output suffix
array, they serve only for determining the relative order of suffixes starting at the end of
each partition. An LCP entry of SAuv is the length of the longest common prefix of each
suffix in SAuv with its immediate predecessor. Figure 4 shows such an array for the pair
A, B of partitions for the same input string as in Figure 2. From each SAuv, we extract

partition bit
LCP
suffix start

1320323120
BBAABBAABA

3424521315
SAAB (in memory)

partition bit
LCP
suffix start

1320323120
BBAABBAABA

3424521315
SAAB (in memory)

1320323120LCP
partition bit BBAABBAABA

RAB

1320323120LCP
partition bit BBAABBAABA

RAB

24135
SAA

24135
SAA

written to disk

Fig. 4. Suffix array SAAB with LCP information for a pair of partitions A and B. Two structures are
extracted from SAAB : (1) the suffix array of partition A and (2) the order array RAB storing the relative
order of suffixes in A and B. These two structures are written to disk.

two structures: (1) the suffix array SAu for partition Xu and (2) an “order array” Ruv of
size |Xu| + |Xv|. The order array Ruv contains the LCP entries of SAuv plus the partition

8

ID information. Since each Ruv contains an information only about two partitions, we only
need to use one bit to represent the partition ID in Ruv. Specifically, we use 0 for u and 1
for v (u < v). Figure 4 shows SAA and RAB extracted from SAAB for partition pair (A,B).

At the end of this step we have on disk k suffix arrays for k partitions (of total size N),
plus k(k − 1)/2 order arrays for each possible pair of partitions (of total size kN).

This is all the information we need to efficiently perform the merge. As a result of this
merge we produce the suffix tree for the entire input string X. We are doing this without
loading the entire input string into main memory. In fact, we never access X anymore.

Algorithm initializeMerge
1. for each SA_bufu

2. read first m start positions
from disk suffix array SAu

3. for each R_bufuv

4. read first m/k LCP+partitionBit from Ruv

5. for each SA_bufu

6. insert SA_bufu[0] into heap

Fig. 5. The pseudocode for buffer allocation as the initial step for merge.

3.5 Step 3: Merging

In order to merge the suffix arrays of different partitions, we use the information from the
order arrays. Notably, all these arrays are accessed sequentially.

More specifically, the merge works as follows. As in the classical 2PMMS, we have k
input buffers for each of the k disk-based suffix arrays created in Step 2. We denote the
buffer for a suffix array SAu by SA BUFu.

In addition, we use k(k − 1)/2 input buffers for order arrays. We denote the buffer for
an order array Ruv by R BUFuv.

Finally, we have an output buffer, ST BUF , where we collect the nodes of the merged
suffix tree before emptying it to disk. The total size of all the buffers matches the size of
the available main memory.

We start with filling the input buffers with the elements of the corresponding arrays
(See pseudocode in Figure 5). We associate a pointer with each SA BUF and R BUF
which points to the current element of the buffer. Originally, the pointers are set to the first
element of each buffer.

We start by comparing the first elements of each suffix array buffer. In order to compare
two entries of, say, SA BUFu and SA BUFv (u < v), we consult the partition bit in buffer
R BUFuv under the current pointer, as shown in pseudocode of Figure 6. If the bit is 0, we
conclude that the current suffix of partition u is lexicographically smaller than the current
suffix of partition v, and vice versa.

The top element of the heap, the smallest suffix (belonging to, say, a partition u) migrates
to the suffix-tree output buffer. The pointer for buffer SA BUFu is advanced by 1. The

9

Algorithm compareSuffix (Si from partition u,
Sj from partition v)

1. if (u = = v)
2. return -1 //Si <lex Sj, since they are sorted

//in increasing order inside each partition
3. if (u < v)
4. if (partitionBit in R_bufuv[current pointer] = = 0)
5. return -1 //Si <lex Sj
6. else
7. return 1 //Si >lex Sj
8. if (u > v)
9. if (partitionBit in R_bufvu[current pointer] = = 0)
10. return 1 //Sj <lex Si
11. else
12. return -1 //Sj >lex Si

Fig. 6. Algorithm for suffix comparison which uses the pairwise suffix information from the order arrays
created during pairwise suffix sorting.

pointers for all the order array buffers containing information about partition u are also
advanced by 1, as shown in pseudocode of Figure 7. This means we have determined the
order of the current suffix of partition u, and we need to consider the next element both
in SA BUFu and in all relevant order buffers. We insert into the heap the next suffix of
partition u, and we continue in a similar way until all suffixes are merged.

Algorithm advancePointers (partition ID u)
1. SA_bufu.current_pointer++
2. if reached the end of SA_bufu
3. refill SA_bufu from disk-based SAu
4. for (i=0; i<u; i++)
5. R_bufiu.current_pointer++
6. if reached the end of R_bufiu
7. refill R_bufiu from disk-based Riu
8. for (i=u; i<k; i++)
9. R_bufui.current_pointer++
10. if reached the end of R_bufui
11. refill R_bufui from disk-based Rui

Fig. 7. Pseudocode of current pointer advancing in suffix array buffer and the order buffers.

At any point, when one of the input buffers is processed till the end, we refill it with the
elements of the corresponding on-disk array. If no data remains in the on-disk array, this
array is considered no longer active. When only one active SA BUF remains, the algorithm
finishes up by just adding all the remaining suffixes of this array to the (output) suffix tree.

Note, that the disk-resident suffix arrays and the order arrays are read sequentially,
which would not be the case if we were consulting the input string X to resolve a relative
order for arbitrary suffix start positions of different partitions.

10

The complete pseudocode of merge is shown in Figure 8.

Algorithm merge
1. lastTransferred = null
2. while heap is not empty
3. remove smallest suffix Si of partition u

from the top of the heap
4. rebalance heap

5. lcp = 0
6. if lastTransferred is not null
7. v = lastTransferred.partitionID
8. lcp = LCP from R_bufuv [current_pointer]

9. create leaf for Si using lcp in ST_buf
10. advancePointers (u)

11. lastTransferred=Si

12. if ST_buf is full
13. store Si (max suffix)

as a pointer to the current tree
14. write ST_buf to disk
15. lastTransferred = null

16. Sj = get next suffix from SA_bufu
17. if Sj is not null
18. insert Sj into heap

Fig. 8. The general pseudocode for merge.

What happens with each suffix in the output buffer is the subject of the next section.

3.6 Suffix Tree Output Buffer

Here we discuss how we incrementally build the suffix tree in output buffer ST BUF .
First of all, we consider each suffix to be inserted into the tree as a sequence of bits.

Therefore, we build a suffix tree over a binary alphabet. Note that since in each step we
add one suffix to the tree, treating the suffix as a sequence of bits does not increase the
total number of leaves in the suffix tree: the tree has one leaf node and one internal node
for each inserted suffix. All that changes is the length of the edge labels. The tree over the
binary alphabet is illustrated in Figure 9 which shows the suffix tree for XB = 0001000110
which is an equivalent binary representation of X = ababc in Figure 1.

This representation of the suffix tree supports all the usual string queries. For example,
in order to find occurrences of a pattern in string X we can treat the pattern as a sequence
of bits, and match these bits along the path from the root of the suffix tree for X. Also, if
we are looking for the longest repeating substring (LRS) of X, and the alphabet contains
characters represented by b bits each, we find the internal node of the greatest depth, say

11

d, from the root, and then we calculate the LRS (with respect to the original alphabet) as
LRS = �d/b�.

The advantage of using the binary alphabet is that each suffix tree node branches exactly
into two children, and we can represent each suffix tree node using constant space and store
the entire tree as an array of nodes.

R

0 1

4

32
000110

0

000110

001

10

1

10

10

cbaba
1001000100
cbaba
1001000100

Fig. 9. Suffix tree over binary alphabet for X = ababc with edges labeled for clarity with the corresponding
bit sequences.

Thus, the suffix tree buffer ST BUF is represented as an array of tree nodes. Each tree
node is a structure containing: the positions (referring to the same array) of the left and
right children of the current node, and the start position i of the substring X[i, j] labeling
the incoming edge of this node. Note, that we do not need to explicitly store the end position
j of this substring, since for internal nodes this end position can be calculated from the start
position of the left child and for leaf nodes it is simply N . However, since we are working
with inputs whose size exceeds what can be stored in a 4-byte integer, we have to represent
the position inside the input as a combination of the partition number and the offset inside
this partition. We use 1 byte for the partition id, 2 integers (8 bytes) for the children’s
positions and 1 integer (4 bytes) for the substring X[i, j] start position inside the partition.

ST BUF is used to collect a growing suffix tree of lexicographically sorted suffixes. The
pointer in ST BUF points to the next available slot. When the first suffix, say Si, migrates
to the output buffer, we initialize the tree considering ST BUF [0] as a root node, and
advance the pointer by 1. Then, we add the first child — a leaf node for suffix Si. This node
ST BUF [1] is placed into the next slot of the array. It contains start position i of Si and
its partition number. When the second suffix, say Sj , migrates into the growing suffix tree,
all we need to do is to find the splitting point at a distance of LCPij from the root. We use
the previous leaf node ST BUF [1] as a new internal node, and we create two leaf nodes:
ST BUF [2] for an existing leaf and ST BUF [3] for a new leaf corresponding to a second
suffix Sj . The left child position of the node stored in ST BUF [1] is now 2, and the right
child is 3. The start positions of the new leaves are calculated by adding LCPij to i and j
respectively. The edge to split is found on a “border path” of the current suffix tree. The
border path is the rightmost path in the current suffix tree and it corresponds to the largest
suffix inserted just before the current one.

The information about the LCP length is obtained from the corresponding order array,
where it was written during the pairwise sorting step. Namely, we keep track of the partition

12

number of the last inserted suffix. Before adding the next suffix, we read the length of the
LCP of this suffix with the previously inserted suffix (from the order array buffer).

Since we are visiting each node of the tree not more than twice, the total running time
of this construction is linear in the size of the suffix tree. From the above, we have that there
are two nodes for each suffix, one is a leaf and the other is internal. Therefore, ST BUF
contains suffix-tree nodes of 13 bytes each, which makes it 26 bytes of main memory per
inserted suffix.

Figure 10 represents the insertion of the two first suffixes into a tree for a binary string
Xb = 0001000110 obtained from X = ababc. For clarity, the array elements are aligned
as tree nodes and the corresponding suffix of an incoming edge for each node is explicitly
shown. Note that only suffixes which start at even positions of Xb are inserted into a tree,
since they represent the actual suffixes of X.

The construction of the tree in this example proceeds as follows. Along the LCP in-
formation in each order array we store one bit representing the next bit after —LCP— in
the current suffix. The lexicographically smallest suffix S0 (0001000110) is the first to be
inserted into the tree. It is the left child of the root, since the first bit after LCP is 0.
We create a root node and set its left child value to 1 which is the next available slot in
ST BUF array. The incoming edge of the new leaf node represents the substring starting
at position 0 and ending at N . The next suffix to be inserted is suffix S4, and its |LCP |
with the previous suffix is 4 (in bits). We break the edge of the previously added leaf node
by converting it into a new internal node at depth 4 from the root and adding two new
leaves corresponding to the previous suffix S0 and a new suffix S4.

We continue in a similar way filling the output buffer with lexicographically ordered
suffixes. When the buffer is full, it is flushed to disk, the ST BUF array pointer is reset to
position zero, and the suffix tree construction starts from the beginning.

0

1

0

1

000100
0110

1

0

000100
0110

1

0

8,96,74,52,30,1
cbaba

1001000100
8,96,74,52,30,1
cbaba

1001000100

0

2

0

2

103

8

103

8

00012

310

00012

310

0001101

4

0001101

4

A B

Fig. 10. The two first steps of building the suffix tree for XB = 0001000110, which represents X = ababc, in
output buffer ST BUF . A. Adding the lexicographically smallest suffix S0 = 0001000110. B. Adding suffix
S4 = 000110 by splitting the edge at distance |LCP0,4| = 4 from the root node.

3.7 The suffix tree on-disk layouts

Note that, since the leaf nodes do not have any child information, after a suffix tree with L
leaves is built in the output buffer, we can write it to disk as two separate arrays: an array

13

of internal nodes of size up to L and an array of leaf nodes of size exactly L. Each entry
in the array of internal nodes has a size of 13 bytes, and each element in the array of leaf
nodes has a size of 5 bytes. The total size of the on-disk suffix tree for L suffixes is therefore
13 + 5 = 18 bytes per suffix. Note that this representation of a suffix tree does not harm
the performance of string queries.

Before flushing the output buffer to disk, as done in [1], we add the 32-character prefix
of the suffix last inserted into the tree to a collection of dividers. Each divider contains the
prefix of the lexicographically largest suffix in the corresponding suffix tree along with a
pointer to the file where the tree is stored.

Thus, at the end of the computation we have on disk a forest of suffix trees, each of
which can quickly be located from a corresponding divider, and then loaded and queried in
main memory. Notably, all these small trees are of equal length, which solves the problem
of data skew for prefix-based partitioning of the on-disk suffix tree, as in [10, 23].

Finally, we note that the collection of dividers is small and can be kept in main memory
during query execution. For example, in order to locate a pattern in X, we first scan the
collection of dividers to find the proper tree, then we load this tree into main memory and
search inside it.

3.8 Analysis

Since the suffix array construction and the LCP computation for each pair of partitions can
be done in time linear in its length 2N/k, and we have k(k−1)/2 different pair combinations,
the running time of the sorting step is O(kN), where k = 2N/M . In other words, the time is
proportional to the total input size and the input-to-memory ratio, i.e. how many times our
input exceeds the available main memory. The suffix arrays and the order arrays produced
in this step require O(kN) temporary disk space. In the merge step, the suffix tree of the
size O(N) is constructed in time linear in N , this requres, however, the complete scan of
the intermediate order arrays of size O(kN). Thus, the total running time of the B2ST
algorithm is O(kN).

4 Experimental Evaluation

We implemented B2ST in C and compiled with a GNU gcc compiler, version 4.1.2. All
experiments were performed on a machine with an Intel Core Duo 2.66 Ghz CPU, 2GB
RAM and 4MB L2 cache under Ubuntu 7.04, 32-bit Linux.

The first step in our implementation was to choose an algorithm which creates a suffix
array with LCP information for each pair of partitions. Our objective was to evaluate the
main idea of B2ST , assuming the required suffix arrays for each pair of partitions are given.
For this purpose we used the modification of DiGeST [1] which outputs a suffix array with
LCP values instead of suffix trees. DiGeST can build suffix arrays for very large inputs,
requiring only that the input string fits into main memory. Thus, suffix arrays for 4GB of
DNA are efficiently built using a main memory string buffer of 1GB assuming the DNA
string is first compressed using 2 bits per character.

We first evaluated the performance of our algorithm in comparison with algorithms
TDD and Trellis+SB. We obtained the source code for Trellis+SB and TDD from [29] and

14

[28] respectively. Since TDD and Trellis+SB implementations were not reported to handle
inputs larger than 3GB, we designed a comparative experiment for 3GB of human genome
DNA input.

Both Trellis+SB and B2ST work on compressed inputs (using two bits per DNA char-
acter). This means that the 3GB of DNA occupies 750MB of space. In order to simulate
the case when the input string does not fit into main memory, we restricted the total avail-
able memory to these algorithms to 600MB. We have used the maximum of available main
memory (2GB) for TDD which works with uncompressed inputs. The results are shown in
Figure 11.

3B2ST

11Trellis+SB

125TDD

Time, hoursProgram

3B2ST

11Trellis+SB

125TDD

Time, hoursProgram

Fig. 11. Running times of different suffix tree construction algorithms for approximately 3GB of DNA
sequence (human genome) which is larger than the total allocated main memory.

TDD builds the suffix tree for the above 3GB input in 125 hours. We were unable to
reproduce the results of Trellis+SB reported in [20]. The value in Figure 11 is the result
reported in [20] for similar settings on a comparable machine.

For B2ST we divided the 3GB into partitions of 1GB each and built the suffix array for
partition pairs of a total size of 2GB. As already mentioned, we used for this 600 MB of
main memory. We then merged the arrays using the technique described in Section 3 into
suffix trees of a total size of 59GB.

The sorting of suffixes in the 3 pairs of 3 partitions took 118 minutes, while the merge
took only 13 minutes. This shows that our new algorithm B2ST achieves a drastic perfor-
mance improvement over the other algorithms for strings that do not fit the main memory.

This confirms that performing sequential scans as we do in B2ST pays off compared to
just focusing on reducing the number of random disk I/O’s to the input string, as the other
algorithms do.

Next we evaluated the scalability of our algorithm. Using 1.5GB of main memory to
hold input string we constructed suffix trees for 6, 8, 10 and 12GB of genomic data. These
datasets were generated from combinations of sequences of eucaryotic genomes obtained
from [26]. The exact description of inputs is as follows:

1. A dataset of size 6.2GB containing human, chimpanzee, and zebra fish genomes
2. A dataset of size 8.4GB containing human, chimpanzee, zebra fish, and cow genomes
3. A dataset of size 9.7GB containing human, chimpanzee, zebra fish, mouse, and chicken

genomes
4. A dataset of size 11.7GB containing human, chimpanzee, zebra fish, cow, mouse, and

chicken genomes

The performance results are shown in Figure 12. The size of each partition is 2GB. The
partition pair of size 4GB was compressed into 2 bits per character string, and processed
into the suffix array with LCP. For our largest input, 12GB, we had 6 partitions and 15
partition pairs. The time taken to build the suffix arrays of these 15 pairs was 25 hours

15

and produced an intermediate on-disk output of size 234GB. Despite this, the merge phase
completed in only 59 minutes, scanning all this on-disk data in sequential manner and
produced 2514 suffix tree files of total 215GB.

152159146215612

114242110010510

76434730648

46827441336

Total
time,
min

Merge,
min

Pairwise
sorting,
min

Number of
partition
pairs

Number
of
partitions

Input
size,
GB

152159146215612

114242110010510

76434730648

46827441336

Total
time,
min

Merge,
min

Pairwise
sorting,
min

Number of
partition
pairs

Number
of
partitions

Input
size,
GB

Fig. 12. Running time (min) of B2ST for different sets (approximately 6, 8, 10 and 12GB) of genomic DNA
using only 2GB of main memory.

This example shows that we need a large temporary disk space for scaling up the B2ST
algorithm. Specifically, we need D = k2p = kN disk space to store the order arrays for
all partition pairs. Since the number of partitions is k = N/M , from D = N2/M we can
determine the size of the largest input that we can process with M bytes of internal memory
and D bytes of disk space. If we substitute the common values for modern computers,
D = 1012 (1TB), and M = 4 × 109 (4GB), then we can build suffix trees using such a
machine for up to 60GB of input. Note, however, that the construction of suffix trees even
for 10GB of input was never achieved and reported before.

As for the execution time, it is clear that the construction of suffix arrays for a pair of
partitions can be done in parallel, since each such sorting is independent of the others. The
scanning of O(kN) intermediate disk structures in the merge step is very efficient due to
the sequential reading. So, by using our B2ST algorithm, indexing a large amount of DNA
data with suffix trees becomes a feasible routine task.

4.1 Concluding remarks

In this paper we described a new approach to build suffix trees for very large inputs. The
B2ST algorithm is designed to store all its inputs, outputs and intermediate data structures
on disk, making it a truly external memory algorithm. The algorithm uses an external
memory merge-sort paradigm and allows to scale up the building of suffix trees on disk for
inputs, which was practically impossible before.

References

1. M. Barsky, U. Stege, A. Thomo, and C. Upton. A new method for indexing genomes using on-disk
suffix trees.

Proceedings of CIKM 2008: 649–658, 2008.

2. D. Benson, I. Karsch-Mizrachi, D. Lipman, J. Ostell, and D. Wheeler. GenBank.

Nucleic Acids Research, 34: 2006.

3. W.I. Chang, E.L. Lawler. Sublinear Approximate String Matching and Biological Applications.

Algorithmica, 12(4/5): 327–344, 1994.

16

4. A. Crauser, and P. Ferragina. Theoretical and experimental study on the construction of suffix
arrays in external memory.

Algorithmica, 32(1): 1–35, 2002.
5. A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White and S. L. Salzberg.

Alignment of whole genomes.
Nucl. Acids. Res, 27(11): 2369–2376, 1999.

6. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity of suffix
tree construction.
Journal of the ACM, 47(6): 987–1011, 2000.

7. P. Ferragina and R. Grossi. The String B-Tree: A new data structure for string search in external
memory and its applications.
Journal of the ACM, 46(2): 236–280, 1999.

8. H. Garcia-Molina, J. D. Ullman, J. D. Widom. Database System Implementation.
Prentice-Hall Inc., 1999.

9. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational
Biology.
Cambridge University Press, 1997.

10. E. Hunt, M.P. Atkinson, R.W. Irving. A database index to large biological sequences.
The VLDB Jornal, 7(3): 139–148, 2001.

11. M.V. Katti,P.K. Ranjekar, and V.S. Gupta. Differential distribution of simple sequence repeats
in eukaryotic genome sesquences.
Molecular Biology and Evolution, 18: 1161–1167, 2001.

12. J. Kececioglu, and J. Ju. Separating repeats in DNA sequence assembly.
Proceedings of RECOMB 2001: 176–183, 2001

13. D. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.

Addison-Wesley, 1998.
14. S. Kurtz, A. Phillippy, A.L. Delcher, et al. Versatile and open software for comparing large

genomes.
Genome Biol, 5(R12): 2004.

15. S. Kurtz, and C. Schleiermacher. REPuter: fast computation of maximal repeats in complete
genomes.
Bioinformatics, 15: 426–427, 1999.

16. U. Manber, and E. Myers. Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal of Computing, 22(5): 935–948, 1993.

17. E. M. McCreight. A Space-economical Suffix Tree Construction Algorithm.
Journal of the ACM, 23(2): 262–272, 1976.

18. G. Navarro and R. Baeza-Yates. A new indexing method for approximate string matching.
Technical Report TR/DCC-98-14 of the Department of Computer Science, Univ. of Chile, 1998.

19. B. Phoophakdee and M. J. Zaki. Genome-scale Disk-based Suffix Tree Indexing.
ACM SIGMOD International Conference on Management of Data, 2007.

20. B. Phoophakdee and M. J. Zaki Trellis+: An Effective Approach for Indexing Massive Sequence.
Pacific Symposium on Biocomputing, 2008.

21. A. Siepal et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes.
Genome Research, 15 : 1034–1050, 2005.

22. W. Smyth. Computing Patterns in Strings.
Addison-Wesley, 2003.

23. S. Tata, R.A. Hankins, J.M. Patel. Practical suffix tree construction.
Proceedings of 30th VLDB conference, 36–47, 2004

24. Y. Tian, S. Tata, R. Hankins, J. Patel. Practical methods for constructing suffix trees.
The VLDB Journal, 14(3) : 281–299, 2005.

25. J. Yang, W. Wang, Y. Xia, P. S. Yu. Accelerating Approximate Subsequence Search on Large
Protein Sequence Databases.
CSB, Proceedings of the IEEE conference on Bioinformatics: 207, 2002.

26. USCS Genome Browser:
hgdownload.cse.ucsc.edu/downloads.html

17

27. NCBI Genebank overview:
http://www.ncbi.nlm.nih.gov/Genbank/

28. Source code for TDD:
www.eecs.umich.edutdddownload.html

29. Source code for Trellis+SB:
www.cs.rpi.edu/∼zaki/software/trellis

18

