
Online update of B-trees.

ABSTRACT
Many scenarios impose a heavy update load on B-tree in-
dexes in modern databases. A typical case is when B-trees
are used for indexing all the keywords of a text field. For
example upon the insertion of a new text record (e.g. a
new document arrives), a barrage of new keywords has to
be inserted into the index causing many random disk I/Os
and interrupting the normal operation of the database. The
common approach has been to collect the updates in a sep-
arate structure and then perform a batch update of the in-
dex. This update“freezes”the database. Many applications,
however, require the immediate availability of the new up-
dates without any interruption of the normal database oper-
ation. In this paper we present a novel online B-tree update
method based on a new buffering data structure we intro-
duce - Dynamic Bucket Tree (DBT). The DBT-buffer serves
as a differential index for new updates. The grouping of
keys in DBT-buffer is based on the longest common prefixes
(LCP) of their binary representations. The LCP is used
as a measure of the locality of keys to be transferred to the
main B-tree. Our online update system does not slow down
concurrent user transactions or lead to degradation of search
performance. Experiments confirm that our DBT buffer can
be efficiently used for online updates of text fields. As such
it represents an effective solution to the notorious problem
of handling updates to an Inverted Index.

1. INTRODUCTION
The amount of data stored in modern databases is con-

stantly increasing. This is especially true when the database
continually draws data from different sources, and is up-
dated by multiple users simultaneously. A modern database
system has to be able to deal with very high update rates.
At the same time, many applications require that new up-
dates be available for search immediately, not deferred.

Updates change not only the underlying tables but also
their indexes. The performance of disk-based indexes is
dominated by the number of disk I/Os. The focus of this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

paper is the efficient update of B-tree indexes.
Each insertion or deletion in a B-tree is performed with at

most a logarithmic number of random disk I/Os. In practice,
B-trees in most systems tend to favor the non-leaf nodes to
be cached in the memory pool while the leaf pages tend
to be swapped out. Assuming that most leaf pages are on
the disk, each new update requires only one disk access per
key. However, if we want to update a B-tree index with,
say 300 keys simultaneously, even one disk I/O per key is
an impractically high price to pay. The update of the index
will take very long.

A commonly used solution is to defer the update and first
collect and sort the (update) keys in a memory buffer and
then transfer them to the disk-based B-tree in one bulk up-
date. This will decrease the amortized number of disk I/Os
per key, since several keys in the buffer will fall in the same
B-tree leaf, and thus can all be inserted with one disk I/O.
The search now needs to be performed simultaneously on the
buffer and B-tree. Clearly, this is not a problem since the
buffer is in main memory. However, when the buffer is full,
its contents have to be transferred to the B-tree. This buffer-
to-B-tree transfer takes a considerable time, during which
all the database activities are ”frozen,” and therefore such
a transfer is normally performed off-line (blocking search
functionality completely). In summary, the efficiency of B-
tree updates can be improved, though significantly harming
search performance [7], or completely blocking it.

The problem, therefore, can be formulated as following:

[Online Update of B-trees] How to improve
the performance of B-tree updates avoiding pe-
riods of operation degradation or blockage.

This has a great practical importance for systems handling
massive dynamic data collections. Consider as an example
the scenario when a B-tree index stores all the keywords of
a large unstructured text field. In this case, an update of
a single text record triggers thousands of updates to the B-
tree index. At the same time, if the update rate is constantly
high, there is no system idle time for synchronization and
maintenance operations.

Indexing the keywords of a text field cell corresponds to
the task of indexing the keywords of a document. In such a
case, the B-tree index is in essence used to store keywords
of an inverted index. The online update of inverted indexes
was identified as one of the main bottlenecks of a Web in-
formation retrieval system (cf. [11]).

The problem of online update of B-trees is not easy. All
proposed systems collect the updates in a main-memory
buffer, and once it is full, perform a bulk load from the

buffer to the B-tree [2, 9, 14, 15, 19, 20] (see also [7] for
a review). Also, the techniques for updating inverted in-
dexes for large text collections, whether they use B-trees or
other data structures, are essentially the same: collect new
keywords in main memory, then merge them with the main
on-disk index (see for example [4, 5, 6, 10, 13, 18, 21]. As ex-
plained above, such buffer-now-transfer all-later approaches
suffer from significant performance penalties.

Our approach. The main idea of our approach is as fol-
lows. As in previous approaches, we also collect the update
keys in a main memory buffer. However, what is different
is the transfer of keys from the buffer to the index on disk.
Intuitively, once the buffer is full, we can transfer to the
index only a part (slice) of the buffered keys, thus avoiding
interruptions of the database activity and freeing some space
in the buffer for new updates. The question now becomes:
what part of the buffered keys should we choose for such
buffer-to-index transfer, in order to free up a fair amount
of the buffer and still be unnoticeable with respect to the
database performance.

For this, we designed a new data structure–Dynamic Bucket
Tree (DBT)–which we use to organize the main memory
buffer. The new keys pass through the main-memory DBT,
and once we need to free up some part of the buffer, the
structure locates the group (bucket) of keys that would lead
to a high disk locality during transfer (touching only a small
number of B-tree leaves).

The selection of the bucket to transfer is based on the
longest common prefix (LCP) of the bit sequence represen-
tation of the keys in the bucket. Notably, the LCP of the
keys is a good measure of their locality. Experiments com-
paring DBT with other buffering data structures (such as
main memory B-trees) show that DBT performs better by an
order of magnitude. Due to our short locality–aware trans-
fers, our update system avoids degradation of the database
performance during heavy of update load.

In addition, the search in the DBT buffer is very efficient
because of the keyword-tree-like nature of our DBT struc-
ture.

To summarize, the main contribution of this paper is an
index update system which is able to perform online update
of B-trees. Specifically we propose:

1. A new data structure for buffering differential updates–
Dynamic Bucket Tree (DBT).

2. A new measure of key locality, based on the longest
common prefix (LCP) of the binary representation of
keys.

3. A new slice-wise transfer strategy, which works well for
high update loads, and does not cause a degradation
of the database performance.

The rest of the paper is organized as follows. In Section 2
we review the related work. In Section 3 we describe the
DBT buffer and the update strategy in detail. In Section 4
we present extensive experimental results of the update per-
formance for various data sets.

2. RELATED WORK
In order to bring down the amortized number of disk I/Os

per key insertion/deletion, the commonly used strategy is to

buffer and group new updates in main memory and transfer
them into the B-tree at once, accessing leaf nodes less often.

Several works explored the possibility of creating a main
memory buffer for each internal node of B-tree [1, 2, 20]. A
new key is first inserted into the root buffer. When a buffer
is full its keys are distributed to the buffers of the next level
(as determined by the intervals of the corresponding internal
B-tree nodes). If there is no next level of internal nodes
(i.e. they are the parents of the leaves), there are no main
memory buffers where to distribute the keys. In this case,
the keys of the entire internal buffer are transferred to the
leaves of the B-tree. This transfer may touch many leaves,
as many as the branching degree of the internal node whose
associated buffer was full. As such this method was proposed
for more efficient bulk update, but not online B-tree updates,
which we consider in this work.

An alternative to buffering updates in buffers attached to
tree nodes is to create a separate data structure for buffering
new insertions (c.f. [9, 14, 15]). This data structure can be
another B-tree or it can be a different type of in-memory
data structure, e.g. hash table. In fact, it can also be a
collection of data structures, forming a cascade of staging
areas, similar to the organization of generational garbage
collection [19]. The buffered keys are kept sorted. Once the
buffer is full, a batch insert of the sorted buffered keys is
performed [16]. A review of these buffering techniques can
be found in [7].

Summarizing the above approaches, the amortized raw
performance of B-tree updates is generally improved by us-
ing buffered updates. However, these approaches are “fill-in
and then empty-all” buffering strategies, and as such can-
not be used for online updates. This is because during the
bulk transfer many leaves in distant parts of the B-tree may
need to be accessed. This essentially “freezes” the normal
operation of the database.

The most striking example of a heavy update load is when
we want to index the keywords of a new document coming
to be stored in a database as unstructured text. Indexing
the keywords of text fields is equivalent to building an in-
verted index. An inverted index ([21]) stores mappings from
each keyword to the IDs of documents (or records) contain-
ing the keyword. An inverted index stored as a flat file is
very difficult to update online. The update of a single doc-
ument requires multiple insertions and/or deletions of key-
words throughout the entire file, and thus requires shifting
disk-resident data. For this reason the problem of updating
an inverted index was identified as one of the major bottle-
necks in the Google’s seminal paper [3].

The possibility of dynamization of inverted indexes was
studied in [6], based on merging an existing index with an
in-memory buffer. The method uses the same buffering and
merging strategy as for batch updates of a B-tree, and as
such it belongs to the “fill-in and then empty-all” family of
methods.

The use of B-trees for storage and dynamic updates was
studied in [5]. Here authors propose to use a B-tree memory
pool as a buffer for new keywords. The buffer is merged with
the on-disk B-tree when full. The use of B-trees does not
require shifting of the entire disk data as in the case of flat
files. However, again, the insertions of new keywords from a
buffer can spread out to the entire interval of B-tree leaves,
and thus, the merge of the buffer with B-tree can take a long
time, making the method infeasible for an online setting.

R
0-child

LCP=1 LCP=8

1-child

00101001

00101101

00101111

01101001

01101011

10101001

Figure 1: Initial state of the DBT-buffer. The max-
imum size of a bucket in this example is k = 5.

In contrast we propose a truly online method for han-
dling heavy update loads without degrading or freezing the
database.

3. OUR SOLUTION.
In this section we present our new buffer data structure,

the Dynamic Bucket Tree Buffer–DBT-buffer–and show how
it is used for online updates of B-tree indexes.

The DBT-buffer resides in main memory and consists of
an array of B buckets, each holding up to k key-rowid pairs.
These buckets are the leaves of a suffix-tree like structure.
This tree contains at most B internal nodes and B leaves,
the latter being the buckets themselves.

Each key is considered to be a sequence of bits (its binary
representation). Each internal node of the tree has two chil-
dren – the “0-bit” child and the “1-bit” child. The children
of a (internal) node can be of two types: internal nodes or
the buckets (leaves). Only the latter contain keys.

For simplicity we will explain here only the case of inser-
tions.1 When the system starts, all the B buckets are empty.
The tree has initially the root and two buckets which are
children of the root. The first keys are distributed among
these two buckets. The keys whose first bit is 0 are inserted
into the first bucket, and those with the first bit 1 are added
to the second bucket. An example is shown in Figure 1.

The keys in the buckets are kept sorted. In addition, each
bucket contains the bit length of the longest common prefix
(LCP) of all the keys in the bucket. We refer to LCP as the
length of the longest common prefix, not the prefix itself.

After adding a new key to a bucket, the LCP of the bucket
might need to be updated. For this, we only need to find
the LCP of the new key and a neighboring key in the sorted
list of keys in the bucket. If this LCP is shorter than the
bucket LCP , the latter is updated accordingly.

When a bucket becomes full, we split it, using the next
available bucket in the bucket array. We distribute the keys
into two buckets based on the bit at position LCP + 1 (See
Figure 2 for an example). The LCP s of these two buckets
are at least 1 bit longer than the LCP of the original bucket.

An internal node is created each time such a bucket, say

1An update process can be regarded as a combination of
insert and delete operations. Extending the buffer with the
deleted keys can be done in a manner similar to adding the
new keys, with an additional 1-bit flag, indicating deletion.

R
0-child 1-child

10101001

LCP=8

00110011

LCP=1
00101001

00101101

 00101111

00110011

01101001

01101011

00101001

00101101

00101111

00110011

01101001

01101011

LCP=3 LCP=6

Figure 2: The first bucket split. Bits at position 2
will be used for the split.

R
0-child

LCP=8

1-child

10101001

LCP=3
00101001

00101101

00101111

00110011

LCP=6
01101001

01101011

1

edge of

length 1 bit

0-child 1-child

Figure 3: DBT tree update after the first bucket
split.

m

b c

LCP=7 LCP=8

5

m

b

c

LCP=10

LCP=8

n

b’

LCP=8

5

2

new key

Figure 4: The depth of a new internal node n in-
creases compared to its parent, and as such the LCP
of each bucket increases with each split.

b, is split. Let m (internal node) be the parent of b before
the split, and n be the new internal node which will be the
parent of b and its new sibling b′ after the split. n will be a
child of m.

Each incoming edge to an internal node has a length. The
length of the edge between m and n is equal to the increase
in LCP of the keys in b and b′ compared to the LCP of the
keys in b and its former sibling before the split.

The depth of an internal node is the sum of edge lengths
on the path from the root to this internal node. The depth of
n equals the LCP of union of the keys in both the resulting
buckets.

As an example consider Figure 4. Before the split (left),
node m has two child buckets, b and c, with LCP s 7 and 8,
respectively. The depth 5 of m indicates that the LCP of
the union of keys in b and c is 5. The LCP of b is 7, and this
says that the keys there share their first 7 bits, but there is
at least a pair of keys differing on the 8th bit. After the split
(right), the new internal node, n, has depth 7, which means
the keys in b and b′ share the first 7 bits. The length of the
edge between m and n equals 2 which is the increase in the
LCP for the union of keys in b and b′. Note that, the LCP
of the resulting buckets is always greater than the LCP of
the original bucket by at least one.

We use the LCP value of a given bucket as a measure
of locality for all the keys inside it. Indeed, the longer the
LCP of the bucket, the higher the chance that its keys will
be inserted into the same (or neighboring) leaves of the B-
tree. This will maximize the locality of disk I/Os when the
bucket content is transferred to disk. As explained above,
during a bucket split, the LCP of the two resulting buckets
is 1 longer than the LCP of the original bucket, thus the
locality of the keys inside the buckets increases with each
split.

In the rare cases when all the keys in a full bucket are
equal, we cannot split, and thus, we transfer all these keys to
the B-tree, incurring essentially the same number of random
I/Os as for the insertion of a single key (the least possible

m

b

c

LCP=10

LCP=8
n

b’

LCP=8

3

new key

length

p

2

2

LCP=

d

Figure 5: A new internal node p and a new bucket d
are created for the new key. This is because only the
three first bits of the new key match the incoming
label of node m.

price for the insertion of multiple keys).
The insertion of keys continues causing new bucket splits

as needed. If a new key does not share a prefix matching one
of the paths to the existing buckets, then we say that this
key does not belong to any such bucket, and thus, a separate
bucket is created. Also, a new internal node is created as a
parent of this newly created bucket. This internal node will
split an edge at the proper depth. As an example consider
the tree in Figure 4 (right). Suppose the edge connecting
the root to node m represents the bit sequence 00001. Now
suppose the 5-bit prefix of a new key is 00010, i.e. only
the first three bits agree with the above edge. Clearly, this
key does not belong to any existing bucket, and we need to
introduce a new bucket d for it (see Figure 5). The new
internal node, p, splits the edge from the root to m at depth
3.

At some point we will need a new bucket (to realize a split
or accommodate a new key), while there is none left in the
bucket array. In such a case, we need to free up at least one
slot in the bucket array. The content of some bucket is to
be transferred to the B-tree on disk.

We choose to transfer (to B-tree) a bucket with the longest
LCP among all the buckets currently in the DBT-buffer.
This is easily accomplished by a depth-first traversal of in-
ternal nodes of the tree selecting the internal node with the
greatest depth. Next, the child bucket of this node with the
largest number of keys is detached from the DBT-buffer,
and its keys are transferred during a short batch insert into
the B-tree. The internal node is removed, and one slot in
the bucket array is freed up. The removal of such a deepest
bucket is illustrated in Figure 6.

Note that the bucket whose keys are transferred to the
B-tree (with the longest LCP), always contains at least k/2
keys, where k is the maximum capacity of a bucket. This is

R

ID=B6ID=B1 ID=B3

1 3

2

4

ID=B4ID=B5 ID=B2

LCP=5 LCP=5

2 keys 4 keys

Bucket

removed

R

ID=B6ID=B1 ID=B3

1 3

2

ID=B5 ID=B2

LCP=5

2 keys

Figure 6: Removal of a deepest bucket.

true since the bucket with the largest LCP is guaranteed to
be a child of some internal node, and as such is a result of
a split of a previous bucket. After the split, one of two new
child buckets contains at least k/2 keys, and it is exactly
this bucket that is chosen for the transfer. In practice, the
average number of keys in each transferred bucket is about
90% of its maximum capacity.

Summarizing, all the update keys pass through the DBT-
buffer, where they are grouped into small chunks (buckets)
of locality-related data, and eventually written to disk in
such small local groups.

The DBT-buffer represents an additional in-memory index
for searching the keys. Note that this additional search is
very efficient with only |Q| bit comparisons, where |Q| is the
query length, and does not depend on the total size of the
buffer.

Regarding database consistency, similar latching and lock-
ing structures can be employed for the DBT buffer as for the
B-tree. When the buckets are being flushed to the B-tree,
these are done in such a way that the locks can be trans-
ferred to the B-tree entries.

Recovery from failures
Recall, that the changes (updates) that need to be re-

flected in the B-tree index are first reflected only in the
in-memory DBT-buffer. The regime of transferring records
from the DBT-buffer to the B-tree index is based on the
value of their key, not the arrival time in the system. For
example if we want to insert the keywords of a document,
they will be first inserted into the DBT-buffer and the tim-
ing of when a keyword reaches the B-tree on disk depends

only on the depth of the bucket that the keyword ends-up
to be placed based on its binary value.

Now, the question is: what happens if the system crashes?
Our solution is a redo logging variant with checkpointing.

In redo logging, the changes asked by a transaction T , before
being reflected to the database, are first recorded in a log file,
followed by a <COMMIT(T)> entry, and then a log flush.
Only then, the buffered changes start to be transferred to
the on-disk database.

If the system crashes, the recovery manager reads the
log file from the beginning identifying all the transactions
marked as committed, and re-executes these transactions. If
a transaction is not marked as committed, then this trans-
action has not yet been reflected to disk, and thus it is safe
to ignore.

We propose the following order when adding new keys to
the DBT-buffer. Any change made in memory for a record
which needs to be reflected to the B-tree index is marked
with a special character ∗, e.g. < T, A, 5, ∗ >. The key-
pointer pair (5, A) is not added to the DBT-buffer, at this
point. After <COMMIT(T)> is written to the log, the log
is scanned backwards to the <START(T)> point, and all
the key-pointer pairs marked by ∗ are added to the DBT-
buffer. If the system crashes, all the committed transactions
are executed again. In this case, only the key updates that
are part of committed transactions are transferred to the
DBT-buffer; if the crash occurs during this process, some
of the keys may be already in the B-tree. These would be
re-updated anyway during the recovery.

Checkpointing is used to avoid scanning the log file from
the beginning. We write START CKPT(T, . . .) to express
that a checkpointing started and record in this log entry all
the uncommitted transactions. We then write END CKPT,
only after all the committed transactions are guaranteed
to be transferred to disk. Recall, that only the keys of
the committed transactions are added to the DBT-buffer.
Thus, between the start and the end of the checkpoint, the
DBT-buffer is also completely emptied into the on-disk B-
tree. Now, suppose that a crash occurs after END CKPT.
Then, all the transactions committed before the START
CKPT(T, . . .) are guaranteed to be reflected to disk, includ-
ing the B-tree updates. On the other hand, if a crash oc-
curs after START CKPT(T, . . .), but before END CKPT,
then we need to consider the log file starting from the previ-
ous START CKPT. Again, we only care for the committed
transactions.

To summarize, the solution to the problem of recovery
can be easily incorporated into an existing recovery scheme:
redo logging with checkpoints.

4. EXPERIMENTAL EVALUATION

4.1 Setup
In order to evaluate the performance gain provided by the

DBT buffer, we have designed four different update systems.
For each type of the input data we consider, a large B-tree
(2 GB) was generated in advance. These B-trees were then
updated using one of the update strategies described in the
following.

1. No buffer. Each new key is inserted into the B-tree
immediately.

sort

…New keys

…New keys

keep

A

B

…New keys

Simple buffer

empty a leaf

…New keys
DBT buffer

empty a

bucket

C

D

Figure 7: High-level representation of the possible
buffering strategies for the online update of B-trees.
A. No buffer: each key is inserted directly to the
B-tree. B. Sequential buffer: keys are collected,
sorted, and then transferred to the B-tree. C. Sim-
ple buffer: in-memory B-tree. D. DBT-buffer.

2. Sequential buffer. A small amount (350 in our ex-
periments) of sequentially arriving keys is buffered in
main memory, sorted, and then transferred to the B-
tree in one batch insert of sorted keys. Note that even
though the keys in such an insertion batch are sorted,
in the typical case they are scattered over multiple B-
tree leaves.

The reason for considering 350 keys for the sequen-
tial buffer is that, in our experiment, this is the av-
erage number of keys we need to insert when updat-
ing (adding) a document. Considering more than this
number of keys for the sequential buffer would give all
the drawbacks of the batch update which we explained
in detail earlier in this paper.

3. Simple buffer. The buffer represents an array of leaf
buckets managed by a root node. This system is a
two-level in-memory B-tree. The root contains a set
of key intervals each associated with a pointer to a
corresponding leaf bucket. The total size of the buffer
in our experiments was 16 MB, thus, a two-level B-tree
with 8000 keys in the root is sufficient. Based on our
experiments, we set the size of the leaf buckets to be
128 keys. This size gave us the best locality during the
update of the main index.

4. DBT-buffer. The keys are initially inserted into the
DBT-buffer. When a new bucket is required and there
are no free slots in the array of buckets, the bucket
with the longest LCP is transferred to the B-tree. This
system is described in detail in Section 3. The size of
a bucket is the same as for the simple buffer, 128 keys.

The high-level graphical representation of the four update
systems is depicted in Figure 7. The goal of the implemented
systems is to keep the index up-to-date, online, i.e. the new
keys are immediately available for search, and there is no
big bulk transfer from the main memory buffer to disk.

In all the experiments, we have considered a continuous
heavy workload and have measured the time required to
keep the index updated when about 1, 000, 000 new keys are
added (one after another). Of course, for massive insertions
of keys which are all sorted, no buffer is required, since they
access the B-tree leaves sequentially. In practice, the up-
dates to a B-tree index arrive in random order, i.e. they do
not come as a stream of sorted keys, unless the column is
of type DATE or TIMESTAMP and transactions come in
time order. Therefore, we assume in our experiments that
the keys are originally not sorted.

For the fairness of comparison, we compare the time and
number of disk I/Os only for the last 350, 000 keys indexed
during the insertion of 1, 000, 000 total keys. This ensures
that both a Simple buffer and a DBT-buffer are in their gen-
eral working state, i.e. there are no empty slots in the bucket
array. It turns out that when all slots are occupied, the in-
sertion of keys using any of the buffering systems causes the
same total number of keys to be transferred to the B-tree.
However, the order and the grouping of transferred keys is
different which accounts for better locality of disk accesses
in our new DBT-buffer based system.

As a proof-of-concept we have implemented only the in-
sertion of new keys. An update process can be regarded as
a combination of insert and delete operations. Extending
the buffer with the deleted keys can be done in a manner

Insertion of 350,000 random keys

331,970

17,857

3,554

1,064

0.0 5.0 10.0 15.0 20.0 25.0

1

B
u

ff
e

r
in

g
 s

tr
a

te
g

ie
s

log of the number of leaves

No buffer Seq Buffer Simple buffer DBT buffer

Figure 8: RANDOM KEYS. The figure shows the
number of affected leaves for the same update with
different buffering strategies. The numbers indicate
the absolute number of leaves. The bars are in the
logarithmic scale.

similar to adding the new keys, with an additional 1-bit flag,
indicating deletion. This extension to the full update func-
tionality would not influence the comparative performance
results presented here.

The update systems were all implemented in C, and com-
piled using the GCC compiler version 4.3.3. The experi-
ments were performed using the Ubuntu 9.04 operating sys-
tem on a 3GHz Intel Pentium 4 machine with 2 GB of RAM.

We used three data sets (types): Randomly generated
keys, string keys from MusicBrainz ([12]), and keywords
from a large document collection ([8]).

4.2 Random keys.
As the first step in performance evaluation, we tested the

efficiency of the above systems using randomly generated
integer keys of 32 bits. The disk I/Os generally dominate
the running time of the entire update process. Assuming
that all but leaf nodes are kept in the main-memory pool,
we have chosen as a measure of performance the number of
leaves touched during the insertion of new keys. The leaf
touch count is incremented only if the following leaf is not
identical to the previous one. Thus, this count corresponds
to the number of disk I/Os for loading the corresponding
B-tree leaves from disk.

The results of this experiment for the insertion of 350, 000
last keys out of total inserted 1, 000, 000 random numeric
keys are shown in Figure 8. The integer keys are treated as
binary sequences of 32 bits.

These results show that direct insertion of random keys
is very costly, and the number of different leaves accessed is
almost equal to the total number of new keys. Obviously, it
is not feasible to directly update the B-tree with each new
key in a heavy update load scenario. The buffering strate-
gies (update systems 2,3, and 4) improve the performance
tremendously. System 4 with the DBT-buffer performs con-
siderably better than the Sequential buffer or the Simple
buffer. For example, the DBT-buffer is 3 times better than
the simple buffer.

Leaves touched during insertion

of 1,000 keys

136

63

6

0

20

40

60

80

100

120

1

R
e
la

ti
v
e
 n

u
m

b
e
r
 o

f
le

a
v
e
s
,
%

Seq Buffer Simple buffer DBT buffer

Figure 9: STRING KEYS FROM THE MUSIC
DATABASE.The number of affected leaves for the
same update with different buffering strategies for
inserting 1000 new keys. The numbers indicate the
absolute number of leaves. The bars show the per-
centage of systems 3 and 4 versus system 2 (sim-
plest).

Disk I/Os for the insertion of 1,000 keys

8914

706

381

10

1346

399

272

9

146

94

65

6

0 20 40 60 80 100

80%

40%

20%

10%

B
-t

r
e

e
 m

e
m

o
r
y

 p
o

o
l

Relative disk I/Os, %

Seq buffer Simple buffer DBT buffer

Figure 10: STRING KEYS FROM THE MUSIC
DATABASE. The number of disk I/Os for the trans-
fer of the 1000 keys to the B-tree. The results are for
four different sizes of the memory pool for caching
nodes of the main B-tree. The numbers on the bars
indicate the actual number of disk I/Os. The bars
show the relative number of disk I/Os as a percent-
age of the buffering system 2 (sorting 350 consecu-
tive keys in main memory before the transfer).

Time for the insertion of 1,000 keys

 54 ms

482 ms

1665 ms

7118 ms

33 ms

251 ms

536 ms

1385 ms

8 ms

59 ms

157 ms

265 ms

0 20 40 60 80 100

80%

40%

20%

10%

B
-t

r
e

e
 m

e
m

o
r
y

 p
o

o
l

Relative running time, %

Seq buffer Simple buffer DBT buffer

Figure 11: STRING KEYS FROM THE MUSIC
DATABASE. The total running time for the trans-
fer of 1000 keys to the B-tree. The results are for
four different sizes of the memory pool for caching
nodes of the main B-tree. The numbers on the bars
indicate absolute time. The bars present the time
as a percentage of the simplest buffering strategy,
update system 2.

4.3 Performance evaluation for real data.
In order to model the performance for large disk-based

B-trees, when only a small portion of B-tree is cached in the
main memory pool, we turned-off the system cache, open-
ing in our code the B-tree disk-resident file with O DIRECT
flag. This ensures that when we read the B-tree nodes into
the memory pool, we always read from the physical disk,
bypassing the system cache, avoiding the read-ahead buffer-
ing strategy and system cache optimizations. This provides
much more reliable results and allows to model a situation
when the B-tree file is much larger than the memory avail-
able to cache its nodes. Replacing the operating system
cache with a controllable programmed memory pool is a
common strategy in implementing large database systems.

We have experimented with indexing of large-scale data
from the music track/CD collection provided in [12]. The
Tracks table contains about 9, 000, 000 records, and the Ti-
tle column of this table represents a title of a music track
(VARCHAR data type). As before, the large B-tree on the
Title field was built in advance, and the 1, 000, 000 last val-
ues were used for testing the online update.

The results presented in Figures 10, 11 and 9 do not in-
clude update system 1 (direct key insertion), since this sys-
tem works many orders of magnitude slower and cannot be
used for the heavy update load which we study in this paper.
As for system 2, 350 consecutive keys were buffered, sorted
and then inserted into B-tree.

We have measured the number of disk accesses for the in-
sertion of the 1000 last keys. Since parts of the main B-tree
are buffered in the memory pool, the number of actual disk
I/Os (and the running time) depends on the size of the mem-

Leaves touched on average per

document insertion (apx. 340

keywords)

145

27

3

0

20

40

60

80

100

120

1

R
e

la
ti

v
e

 n
u

m
b

e
r
 o

f
le

a
v

e
s

,
%

Seq buffer Simple buffer DBT buffer

Figure 12: DOCUMENT KEYWORDS. The aver-
age number of different B-tree leaves affected by the
insertion of a new document with 300–400 keywords
each. The values on the bars indicate the absolute
number of affected leaves. The bars give a percent-
age of the number of leaves comparing to system 2.

ory pool for caching B-tree nodes. The experimental results
for different sizes of the B-tree memory pool are shown in
Figures 10, and 11.

The results indicate that update system 4 (DBT-buffer)
performs one to two orders of magnitude faster than the
other systems. This becomes more apparent for large B-
trees that cannot be efficiently cached in memory. As such,
the proposed system (DBT) can be used during heavy up-
date loads for updating a B-tree index without interrupting
(freezing) the database operations. The benefits of the pro-
posed system can be increased if we need to update multiple
B-tree indexes for a single table. In this case, one DBT-
buffer per each B-tree will solve the problem.

4.4 Update of B-tree with document keywords
(Inverted index)

Further, we experimented with online insertion of docu-
ment keywords. This represents a very high update load. As
before, a large B-tree was created in advance which stores
all keyword-document id pairs of a large document collec-
tion. This B-tree was then updated with the same set of
new keywords, using one of the three update strategies, de-
scribed above. In particular, for each document its words
were parsed, sorted, duplicates removed, and then they were
inserted: (for system 2) directly to B-tree in one batch in-
sertion, (for system 3) directly to the Simple buffer with
occasional transfers from buffer to disk and (for system 4)
directly to the DBT-buffer, also with occasional transfers to
disk.

The input was generated from the Gutenberg text collec-
tion [8], each text being split into a set of smaller texts of
size up to 4 KB. The B-tree index had size 1.3 GB (before
the updates) and contained the keywords of 300, 000 such
documents (about 500 MB of input).

The set of documents for update was different from the

Average disk I/Os for insertion of the keywords

of 1 document (apx. 340 keywords)

0.3

10.0

18.5

233.1

0.2

7.1

10.4

35.2

0.2

1.7

2.5

3.8

0 20 40 60 80 100

80%

40%

20%

10%

B
-t

r
e

e
 m

e
m

o
r
y

 p
o

o
l

Relative disk I/Os, %

Seq buffer Simple buffer DBT buffer

Figure 13: DOCUMENT KEYWORDS. The aver-
age number of disk I/Os for the insertion of new
documents with 300–400 keywords each. The num-
bers on the bars indicate the average number of disk
I/Os. The bars show the number of I/Os as a per-
centage of the update with the sorted keys of each
new document - system 2.

one used to build the index. This set was extracted from the
same collection, and contained 48, 607 files of a total size of
191 MB. The total number of keywords to be inserted was
about 1,000,000.

The results are presented in Figures 13, 14, and 12. From
these results we can see that even in the very unfavorable
situation, when 90% of B-tree nodes are accessed directly
on disk, the DBT-buffer performs on average no more than
4 disk I/Os when inserting the keywords of a document (a
document has on average 340 keywords). This is in stark
contrast with the 233 I/Os for the online insertion of keys
directly to the B-tree, or with the 35 disk I/Os when using
the Simple Buffer. This relative disk I/Os pattern is also
reflected in the running time. The insertion of the same
amount of approximately 340,000 keys (1000 documents)
into the main B-tree is orders of magnitude faster when us-
ing the DBT-buffer than when using direct updates.

The average number of B-tree leaves accessed (touched)
during the insertion of each new document is depicted in
Figure 12. This is a more objective measure of the efficiency
of grouping keys before transferring them to disk, since it
counts all accesses to the different leaves of the main B-
tree, independently of whether they happened to be in the
memory pool or are read from disk. Using the DBT-buffer
is 30 times more efficient than insertion of sorted keys of
one document and (more than) 10 times more efficient than
using the Simple Buffer.

We also studied the dynamics of the key transfer from a
buffer to a B-tree for the last 20 documents of each insert
process. Figures 15 and 16 show the number of disk I/Os
and the number of leaves touched for the insertion of each
document. Approximately the same total number of keys
is transferred to B-tree by all three update systems. The

Average time for insertion of the keywords

of 1 document (apx. 340 keywords)

4880 ms

1240 ms

360 ms

40 ms

1035 ms

400 ms

187 ms

25 ms

203 ms

120 ms

46 ms

6 ms

0 20 40 60 80 100

80%

40%

20%

10%

B
-t

r
e

e
 m

e
m

o
r
y

 p
o

o
l

Relative running time, %

Seq buffer Simple buffer DBT buffer

Figure 14: DOCUMENT KEYWORDS. The aver-
age running time for the insertion of new documents
with 300–400 keywords each. The numbers on the
bars indicate the average time in ms. The bars show
the same results as a percentage of the time of the
update with the sorted keys of each new document
- system 2..

grouping of keys by locality, as DBT does, leads to much
more efficient update, even though the number of inserted
keys for some transfers may be significantly larger than when
using the B-tree directly.

Disk I/Os for 40% buffered b-tree

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B-tree

Simple buffer

DBT-Buffer

Figure 15: The absolute number of disk I/Os per
document for a system with 40% of the B-tree
cached in the main memory pool. The DBT-buffer
shows the best grouping of the keys by locality so
that the minimum number of disk I/Os is performed
per document update.

If we collect the keywords of each document and imme-
diately add them to the B-tree, they fall into numerous in-
tervals represented by the leaves of the main B-tree. This
causes multiple disk I/Os and is quite inefficient for large
trees. Now consider the grouping of keys in the simple buffer
or any variation of it. The distribution of the ranges of keys
in the main B-tree and in the simple buffer is similar. How-
ever the buffer has a smaller number of ranges, which implies

Leaves touched during keys transfer

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B-tree

Simple buffer

DBT-Buffer

Figure 16: The absolute number of B-tree leaf nodes
affected during each document insertion. The DBT-
buffer shows the best grouping of the keys by locality
so that the minimum number of leaves is accessed
per document update.

that the keys from the simple–buffer range correspond to a
much wider range of keys in the main B-tree. This explains
the inefficiency of using the simple buffer strategy for online
update.

The main efficiency gain of the DBT-buffer comes from
the fact that it groups the new keywords always trying to
narrow the range of those grouped together. The narrower
the range, the less leaves of the B-tree index would be af-
fected, thus causing less disk I/Os. Experiments confirm
that when inserting the keys after grouping them with the
DBT-buffer, the range of affected B-tree leaves is several
times smaller than for the two other examined systems (see
Figures 9,12, and 16).

5. CONCLUSION
We presented a novel system for managing B-tree up-

dates. In contrast with the previous approaches, our system
achieves online updates, and does not cause freezing of the
database which is the main drawback of methods performing
large bulk transfers from buffer to disk. Our new buffering
method significantly outperforms other methods in terms of
the total number of disk I/Os and absolute time required
for transferring an equal number of keys to the leaves of a
B-tree index. In addition, each of our short transfers is un-
noticeable by the user – for example, the average time for
indexing about 350 different keywords of a new document
never exceeds 0.3 seconds in all our experiments. In com-
parison, the immediate online update of the B-tree with the
sorted keys of each document calls for about 1 minute per
document. By using our superior grouping of update keys
we are able to handle heavy update loads without sacrificing
the normal search operations. Our buffer is very efficient
to search, with a time complexity that depends on query
size only. This provides truly effective and immediate data
availability. Our method can be used not only for online
updates of B-tree indexes in relational databases, but also
for online updates of inverted indexes for massive document
collections.

6. REFERENCES
[1] L. Arge Efficient External-Memory Data Structures

and Applications. BRICS Dissertation Series,DS-96-3:
1996.

[2] L. Arge, K. Hinrichs, J. Vahrenhold, and J. S.

Vitter Efficient Bulk Operations on Dynamic
R-Trees. Algorithmica, 33(1): 104–128, 2002.

[3] L. Brin, and L. Page The anatomy of a large-scale
hypertextual Web search engine. Computer networks
and ISDN systems, 30(1–7): 107–117, 1998.

[4] S. Buttcher, C. Clarke, and B. Lushman Hybrid
Index Maintenance for Growing Text Collections.
SIGIR: 2006.

[5] D. Cutting and J. Pedersen Optimizations for
dynamic inverted index maintenance. Proceedings of
SIGIR90: 405-111, 1990.

[6] L. Galambos Dynamization in IR Systems.
Intelligent Information Systems:297–310, 2004.

[7] Goetz Graefe B-tree indexes for high update rates.
SIGMOD Record, 35(1):39–44, 2006.

[8] Official project Gutenberg WEB site.
http://www.gutenberg.org/wiki/Main Page

[9] Leslie, H., Jain, R., Birdsall, D., and Yaghmai,

H. Efficient Search of Multi-Dimensional B-trees. The
VLDB conference: 710–719, 1995.

[10] L. Lim, M. Wang, S. Padmanabhan, J.S. Vitter,

R. Agarwal Dynamic Maintenance of Web Indexes
Using Landmarks. The W3 Conference: 2003.

[11] C. D. Manning, P. Raghavan, and H. Schütze

Introduction to Information Retrieval Cambridge
University Press: 2008.

[12] MusicBrainz, a user maintained community music
metadatabase. http://metabrainz.org/

[13] A. Moffat, and J. Zobel Self-Indexing Inverted
Files for Fast Text Retrieval. ACM TIS, 14(4):
349-379, 1996.

[14] Muth, P., O’Neil, P., Pick, A., and Weikum, G.

The LHAM log-structured history data access
method. The VLDB Journal, 8 (3–4): 199-221, 2000.

[15] O’Neil, P., Cheng, E., Gawlick, D., and O’Neil,

E. The log-structured merge-tree (LSM-tree). Acta
Inf., 33(4): 351-385, 1996.

[16] Pollari-Malmi, K., Soisalon-Soininen, E., and

Ylönen,T. Concurrency Control in B-trees with
Batch Updates. IEEE Trans. Knowl. Data Eng.,
8(6):975–984, 1996.

[17] Project Gutenberg Selections.
http:/nltk.googlecode.com/svn/trunk/nltk data

[18] A. Tomasic, H. Garcia-Molina, and K. Shoens

Incremental Updates of Inverted Lists for Text
Document Retrieval. the SIGMOD Conference:
289-300, 1994.

[19] D. Ungar Generation Scavenging: A Non-Disruptive
High Performance Storage Reclamation Algorithm.
Software Development Environments (SDE): 157–167,
1984.

[20] J. Van den Bercken, B. Seeger, and P.

Widmayer A Generic Approach to Bulk Loading
Multidimensional Index Structures. The VLDB
conference: 406-415, 1997.

[21] J. Zobel and A. Moffat Inverted Files for Text
Search Engines. ACM Computing Surveys 38 (2): 6.

